女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁(yè) > 廠商動(dòng)態(tài) > 英飛凌
[導(dǎo)讀]摘要:在AC-DC SMPS應(yīng)用中,通常會(huì)在輸入級(jí)使用功率橋式整流器,將交流電壓轉(zhuǎn)換為單向的直流電壓。在這種拓?fù)浣Y(jié)構(gòu)中,還會(huì)使用大容量電容器作為紋波濾波器,來(lái)穩(wěn)定總線電壓,這會(huì)導(dǎo)致功率因數(shù)性能較差,并將諧波污染反饋到電網(wǎng)。為了改善功率因數(shù)和諧波電流,通常需要使用PFC電路。但額外增加一個(gè)功率級(jí)意味著會(huì)降低系統(tǒng)效率和可靠性。在本文中,我們提出了一種基于單電感結(jié)構(gòu)的單級(jí)AC-DC拓?fù)浣Y(jié)構(gòu),具備PFC和LLC功能。該拓?fù)浣Y(jié)構(gòu)保留了傳統(tǒng)LLC諧振轉(zhuǎn)換器的零電壓開關(guān)(ZVS)優(yōu)勢(shì),同時(shí)實(shí)現(xiàn)了高功率因數(shù)性能。

摘要:在AC-DC SMPS應(yīng)用中,通常會(huì)在輸入級(jí)使用功率橋式整流器,將交流電壓轉(zhuǎn)換為單向的直流電壓。在這種拓?fù)浣Y(jié)構(gòu)中,還會(huì)使用大容量電容器作為紋波濾波器,來(lái)穩(wěn)定總線電壓,這會(huì)導(dǎo)致功率因數(shù)性能較差,并將諧波污染反饋到電網(wǎng)。為了改善功率因數(shù)和諧波電流,通常需要使用PFC電路。但額外增加一個(gè)功率級(jí)意味著會(huì)降低系統(tǒng)效率和可靠性。在本文中,我們提出了一種基于單電感結(jié)構(gòu)的單級(jí)AC-DC拓?fù)浣Y(jié)構(gòu),具備PFC和LLC功能。該拓?fù)浣Y(jié)構(gòu)保留了傳統(tǒng)LLC諧振轉(zhuǎn)換器的零電壓開關(guān)(ZVS)優(yōu)勢(shì),同時(shí)實(shí)現(xiàn)了高功率因數(shù)性能。

背景

在AC-DC SMPS應(yīng)用中,橋式整流器被用于將交流輸入轉(zhuǎn)換為直流總線電壓,并為第二級(jí)的隔離DC-DC轉(zhuǎn)換器供電。其中,電流與輸入電壓的不匹配會(huì)給電網(wǎng)帶來(lái)大量的諧波反饋。因此,電子儀器在接入電網(wǎng)時(shí),需要遵循相關(guān)標(biāo)準(zhǔn)規(guī)定的功率因數(shù)規(guī)范和諧波限制。為了解決這些問(wèn)題,在大多數(shù)AC-DC應(yīng)用中,通常會(huì)使用功率因數(shù)校正技術(shù)。

單級(jí)AC-DC拓?fù)浣Y(jié)構(gòu)

在本文中,我們提出了一種整合了PFC功能的單電感結(jié)構(gòu)LLC諧振拓?fù)浣Y(jié)構(gòu),如圖1所示。這個(gè)拓?fù)浣Y(jié)構(gòu)由升壓電路和半橋LLC電路組成,二者使用同一對(duì)開關(guān)MOS Q1和Q2。L1是升壓電路的主電感。當(dāng)升壓電路的MOSFET Q1和Q2開始交替開關(guān)時(shí),L1可以平滑輸入電流、減少相位失配、提高PF值,同時(shí)實(shí)現(xiàn)LLC諧振轉(zhuǎn)換。一次側(cè)的Q1、Q2均可在ZVS模式下工作,二次側(cè)SR MOS可以在ZCS(零電流開關(guān))模式下工作。這可以有效地提高整個(gè)系統(tǒng)的效率。

圖1 具有高功率因數(shù)的單級(jí)AC-DC拓?fù)浣Y(jié)構(gòu)

工作原理與狀態(tài)分析

在一個(gè)完整的開關(guān)周期中,我們可以將這個(gè)單極AC-DC轉(zhuǎn)換器分為8個(gè)工作狀態(tài)(包括死區(qū)時(shí)間)。為加深理解,我們將逐個(gè)分析這些工作狀態(tài)。

圖2:工作狀態(tài)1(t0-t1)

狀態(tài)1(t0-t1):如圖2所示,藍(lán)框圈出的部分不參與該工作狀態(tài),彩色箭頭表示電流的流動(dòng)方向,其中,紅色為PFC,綠色為L(zhǎng)LC。在狀態(tài)1中,Q1和Q2關(guān)斷,L1處于放電模式,連續(xù)的電感電流流經(jīng)Qd1的體二極管、儲(chǔ)能電容C3,然后流經(jīng)D6和C2回到L1。同時(shí),在LLC諧振回路中,電流從諧振回路的上端流過(guò)Qd1和C3,回到諧振回路的另一端。在二次側(cè),D7 導(dǎo)通,為輸出電容器C4充電并為負(fù)載供電。由于體二極管Qd1在導(dǎo)通模式下工作,Q1的VDS被限制在體二極管正向電壓,在此周期結(jié)束時(shí),Q1準(zhǔn)備導(dǎo)通, ZVS實(shí)現(xiàn)。

圖3:工作狀態(tài)1(t1-t2)

狀態(tài)2(t1-t2):如圖3所示,在這個(gè)工作狀態(tài)中,Q1切換到導(dǎo)通狀態(tài),L1繼續(xù)放電,電感電流流經(jīng)Q1、C3、D6和C2,然后回到L1。電容器C3仍處于充電模式。在LLC電路中,諧振回路繼續(xù)放電,直至耗盡,此時(shí)電流仍從Lr和Cr流出,來(lái)對(duì)C3充電(如圖3a所示)。充電電流降到0后,耗盡的諧振網(wǎng)絡(luò)將得到升壓電感的短時(shí)間充電,電流變成反向(如圖3b所示)。在整個(gè)工作狀態(tài)2中,變壓器磁感Lm的極性保持在正極接地。在二次側(cè),D7保持導(dǎo)通,并為輸出負(fù)載供電。

圖4:工作狀態(tài)3(t2-t3)

工作狀態(tài)3(t2-t3):如圖4所示,L1完全放電,C3變成放電模式,為整個(gè)系統(tǒng)供電。電容器C1放電電流流經(jīng)Q1,為L(zhǎng)1充電,并通過(guò)D5循環(huán)回來(lái)。C3的放電電流還經(jīng)過(guò)諧振網(wǎng)絡(luò),通過(guò)變壓器傳輸電能,一次側(cè)繞組的極性仍然保持為上面為正極,而二次側(cè)繞組電流繼續(xù)流經(jīng)D7,為輸出負(fù)載供電。

圖5:工作狀態(tài)4(t3-t4)

工作狀態(tài)4(t3-t4):如圖5所示,t3期間,諧振電流等于勵(lì)磁電感Lm中的勵(lì)磁電流,不再有電流流向變壓器的一次側(cè)繞組,電能傳輸結(jié)束,二次側(cè)的二極管D7在ZCS 模式中自然關(guān)閉,正半周功率傳輸完成。輸出電容C4開始放電,并保持恒定的輸出功率。L1仍由輸入電壓充電,直至 Q1 關(guān)斷,充電電流在C1、D5、Q1和L1之間循環(huán)(如圖 5a 所示)。一旦Q1關(guān)斷,Q2的Coss開始放電,并參與諧振。在t4期間,Q2的Coss完全放電,VDS降至0,ZVS導(dǎo)通實(shí)現(xiàn)。

圖6:工作狀態(tài)5(t4-t5)

工作狀態(tài)5(t4-t5):如圖6所示,Q2的Coss完全放電后,ZVS在t4期間導(dǎo)通。L1開始放電并為系統(tǒng)供電,電感電流流經(jīng)C1、D5、C3、Q2,然后循環(huán)回來(lái)。Cr對(duì)Lr持續(xù)充電,Lm在退磁模式下工作,T1的一次側(cè)繞組的極性變成下正上負(fù),整流器D8變成正向,電能通過(guò)D8傳輸?shù)截?fù)載。

圖7:工作狀態(tài)6(t5-t6)

工作狀態(tài)6(t5-t6):如圖7所示,在此期間,L1放電回路與狀態(tài)5相同,不同之處在于諧振回路電流方向相反,Lr開始對(duì)Cr充電,Lm反向磁化。T1的一次側(cè)繞組的極性仍為下正上負(fù),D8保持導(dǎo)通,二次側(cè)電流流過(guò)D8,為C4和負(fù)載供電。

圖8:工作狀態(tài)7(t6-t7)

工作狀態(tài)7(t6-t7):如圖8所示,此時(shí)Q1處于關(guān)斷狀態(tài),Q2處于導(dǎo)通狀態(tài)。L1存儲(chǔ)的電能完全耗盡,電感器開始由輸入電壓源通過(guò)C2充電。充電電流在C2、L1、Q2、D6之間循環(huán)流動(dòng)。D5自然切斷。在LLC 諧振回路中,一次側(cè)繞組的極性為下正上負(fù),電能輸送到二次側(cè),同時(shí)電流通過(guò) D8 流向負(fù)載。

圖9:工作狀態(tài)8(t7-t8)

工作狀態(tài)8(t7-t8):如圖9所示,L1充電回路不變。 在t7期間,諧振電流等于 Lm 磁感應(yīng)電流,沒(méi)有電能通過(guò) T1 傳輸。在 ZCS 模式下,二次側(cè)的D8關(guān)閉。輸出電容器C4開始放電,并為負(fù)載供電。

在上述操作狀態(tài)的描述中,我們沒(méi)有單獨(dú)分析死區(qū)時(shí)間。實(shí)際上,當(dāng)兩個(gè)開關(guān)都關(guān)斷時(shí),電感器 L1的電流將通過(guò)MOS體二極管繼續(xù)流動(dòng),并對(duì) MOSFET 電容器放電,從而實(shí)現(xiàn)ZVS。諧振回路的工作模式與LLC 相同,此處不做過(guò)多描述。

整個(gè)拓?fù)涔ぷ黜樞蛉鐖D10所示,周期從t0開始,到t8結(jié)束,分為8個(gè)工作狀態(tài)。死區(qū)時(shí)間的工作策略與傳統(tǒng)LLC相同,易于理解。在t0之前,Q1的VDS已降至0,因此當(dāng)Q1在t0導(dǎo)通時(shí), ZVS實(shí)現(xiàn),然后一次側(cè)諧振電流上升,并伴隨整個(gè)諧振周期。

圖10 工作順序圖

仿真與驗(yàn)證

仿真

為了驗(yàn)證單級(jí)AC-DC轉(zhuǎn)換器的操作和控制原理,我們使用SIMetrix軟件進(jìn)行了專業(yè)仿真。示意圖如圖11所示。

圖11 仿真示意圖

該示意圖包括橋式整流器D1-D4、濾波電容C1和C2、續(xù)流二極管D5和D6、開關(guān)MOS Q1和Q2、大容量電容C3、諧振電容Cr、諧振電感Lr以及二次側(cè)整流二極管D7和D8。仿真參數(shù)如下表1所示,其中,主要元件的參數(shù)為:C1、C2 330nF、L1 50uH、Lr 120uH、Cr 22nF、Lm 380uH,變壓器匝數(shù)比為8.5:1。仿真結(jié)果和波形如下所示。

表1:仿真參數(shù)

圖12:PFC 輸入電流 vs 輸入電壓

圖12提供了交流輸入電壓與交流輸入電流的對(duì)比波形。圖13顯示了放大后的電感器電流和輸入電壓。該拓?fù)浣Y(jié)構(gòu)理想地實(shí)現(xiàn)了PFC功能。DCM工作策略使得該拓?fù)浣Y(jié)構(gòu)更適合有PFC功能需求的中小功率AC-DC SMPS應(yīng)用。

圖13:IL和AC 輸入的波形(放大后)

圖14:Q2 ZVS導(dǎo)通波形

圖15:Q1 ZVS導(dǎo)通波形

Q1和Q2的ZVS導(dǎo)通特性如圖14和15所示,當(dāng)MOS的VDS諧振達(dá)到0時(shí),柵極導(dǎo)通,ZVS實(shí)現(xiàn),ZVS的行為與 LLC 拓?fù)浣Y(jié)構(gòu)類似。

演示功能驗(yàn)證

為了驗(yàn)證該工作原理在實(shí)際案例中的有效性,我們構(gòu)建了一個(gè)基于300w LLC演示板的高功率因數(shù)單級(jí)AC-DC轉(zhuǎn)換器。它的規(guī)格如下:輸入電壓180Vac,輸出功率12V/25A,諧振電容Cr 66nF,諧振電感Lr 54uH,變壓器磁感690uH,匝數(shù)比16.5:1。

在演示中,我們測(cè)量了交流輸入電壓和電流,測(cè)量結(jié)果均與仿真結(jié)果相符,實(shí)現(xiàn)了預(yù)期的PFC功能。諧振回路可以在一次側(cè)實(shí)現(xiàn)ZVS導(dǎo)通,在二次側(cè)實(shí)現(xiàn)SR二極管ZSC關(guān)斷。電能傳輸至二次側(cè),不會(huì)與LLC功能產(chǎn)生任何沖突。此外,諧波電流也得到了很好的匹配。

總結(jié)

本文研究了一種具有PFC功能拓?fù)浣Y(jié)構(gòu)的單級(jí) AC-DC 轉(zhuǎn)換器。與傳統(tǒng)的兩級(jí)拓?fù)浣Y(jié)構(gòu)相比,即經(jīng)典的PFC+LLC,這種新拓?fù)浣Y(jié)構(gòu)將兩個(gè)電路結(jié)合在一起,并在半橋結(jié)構(gòu)中共用一對(duì) MOS,這有利于降低物料清單(BOM)成本和提高功率密度。由于該拓?fù)渲挥幸粋€(gè)功率電感在DCM模式下工作,因此更適合需要高功率因數(shù)的中小型功率SMPS應(yīng)用,例如:LED照明、快速充電器等。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

在當(dāng)今追求可持續(xù)交通與能源高效利用的時(shí)代,混合動(dòng)力電動(dòng)汽車(HEV)和電池電動(dòng)汽車(BEV)的發(fā)展備受矚目。而在設(shè)計(jì)這些車輛的動(dòng)力系統(tǒng)時(shí),設(shè)計(jì)人員始終面臨著巨大的壓力,需要在提高能效和可靠性的同時(shí)降低成本。從傳統(tǒng)的單一電...

關(guān)鍵字: 電網(wǎng) 能源 電源

在實(shí)際應(yīng)用中,高壓輸電通常采用升壓變壓器將電能升壓至數(shù)十萬(wàn)伏甚至更高,以減少在輸電過(guò)程中的電能損耗,并提高輸電效率。例如,在我國(guó),送電距離在200-300公里時(shí)采用220千伏的電壓輸電;在100公里左右時(shí)采用110千伏;...

關(guān)鍵字: 電壓 電網(wǎng)

深圳2025年5月27日 /美通社/ -- 近日,在第十七屆中國(guó)國(guó)際電池技術(shù)交流會(huì)/展覽會(huì)期間(以下簡(jiǎn)稱為"CIBF 2025"),全球領(lǐng)先的第三方檢測(cè)認(rèn)...

關(guān)鍵字: 電池系統(tǒng) BSP 電網(wǎng) 測(cè)試

在全球碳中和目標(biāo)推動(dòng)下,電力系統(tǒng)作為碳排放的核心領(lǐng)域,其碳排放追蹤與精準(zhǔn)計(jì)量成為能源轉(zhuǎn)型的關(guān)鍵。傳統(tǒng)電網(wǎng)碳排放核算依賴年度統(tǒng)計(jì)數(shù)據(jù),存在精度低、時(shí)效性差等問(wèn)題,難以滿足實(shí)時(shí)優(yōu)化需求。AI驅(qū)動(dòng)的電網(wǎng)碳流分析技術(shù)通過(guò)融合電力...

關(guān)鍵字: AI 電網(wǎng)

隨著人工智能的不斷發(fā)展,其爭(zhēng)議性也越來(lái)越大;而在企業(yè)和消費(fèi)者的眼中,人工智能價(jià)值顯著。如同許多新興科技一樣,目前人工智能的應(yīng)用主要聚焦于大規(guī)模、基礎(chǔ)設(shè)施密集且高功耗的領(lǐng)域。然而,隨著人工智能應(yīng)用的高速發(fā)展,大型數(shù)據(jù)中心給...

關(guān)鍵字: 人工智能 數(shù)據(jù)中心 電網(wǎng)

有源鉗位正激轉(zhuǎn)換器利用P通道MOS進(jìn)行鉗位,是公認(rèn)的高效率電源拓?fù)?。該設(shè)計(jì)支持將儲(chǔ)存的電感能量反饋到電網(wǎng),從而提高整體轉(zhuǎn)換器效率。為了進(jìn)一步提高效率,該設(shè)計(jì)還集成了基于MOSFET的二次自整流電路。本文探討了二次整流電路...

關(guān)鍵字: 有源鉗位正激轉(zhuǎn)換器 電網(wǎng) 二次整流電路

北京2025年4月14日 /美通社/ -- 為期三天的第十三屆儲(chǔ)能國(guó)際峰會(huì)暨展覽會(huì)(以下簡(jiǎn)稱ESIE 2025)在北京首都國(guó)際會(huì)議中心盛大開幕。國(guó)際公認(rèn)的測(cè)試、檢驗(yàn)和認(rèn)證機(jī)構(gòu)SGS攜儲(chǔ)能產(chǎn)品全球市場(chǎng)準(zhǔn)入一站式解決方案亮相...

關(guān)鍵字: SI 新能源 智能化 電網(wǎng)

在能源數(shù)字化轉(zhuǎn)型的浪潮中,電網(wǎng)通信系統(tǒng)正面臨前所未有的安全挑戰(zhàn)與效率需求。傳統(tǒng)無(wú)線通信技術(shù)因帶寬受限、安全漏洞頻發(fā)等問(wèn)題,難以滿足智能電網(wǎng)對(duì)實(shí)時(shí)性、可靠性和安全性的嚴(yán)苛要求。基于WAPI(無(wú)線局域網(wǎng)鑒別與保密基礎(chǔ)結(jié)構(gòu))技...

關(guān)鍵字: WAPI 電網(wǎng)

數(shù)字化轉(zhuǎn)型,電網(wǎng)系統(tǒng)的無(wú)線通信安全成為關(guān)鍵議題。隨著智能巡檢機(jī)器人、無(wú)人機(jī)巡線、移動(dòng)作業(yè)終端等新型設(shè)備的廣泛應(yīng)用,傳統(tǒng)WiFi技術(shù)因安全隱患難以滿足電網(wǎng)安全需求。在此背景下,我國(guó)自主研發(fā)的WAPI(無(wú)線局域網(wǎng)鑒別和保密基...

關(guān)鍵字: WAPI標(biāo)準(zhǔn) 電網(wǎng)
關(guān)閉