女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁 > 測試測量 > 測試測量
[導(dǎo)讀] 中心議題: 用示波器進(jìn)行電源噪聲測試 解決方法: 測量時(shí)讓波形占滿屏幕可有效減少量化誤差 需要選擇合適的探頭 測量小電源噪聲推薦使用50歐的輸入阻抗 當(dāng)今的電子產(chǎn)品,信號(hào)速度越來越快,集成電路芯片

中心議題: 用示波器進(jìn)行電源噪聲測試 解決方法: 測量時(shí)讓波形占滿屏幕可有效減少量化誤差 需要選擇合適的探頭 測量小電源噪聲推薦使用50歐的輸入阻抗 當(dāng)今的電子產(chǎn)品,信號(hào)速度越來越快,集成電路芯片的供電電壓也越來越小,90年代芯片的供電通常是5V和3.3V,而現(xiàn)在,高速IC的供電通常為2.5V, 1.8V或1.5V等等。對(duì)于這類電壓較低直流電源的電壓測試(簡稱電源噪聲測試),本文將簡要討論和分析。

在電源噪聲測試中,通常有三個(gè)問題導(dǎo)致測量不準(zhǔn)確:
1.示波器的量化誤差;
2.使用衰減因子大的探頭測量小電壓;
3.探頭的GND和信號(hào)兩個(gè)探測點(diǎn)的距離過大;

示波器存在量化誤差。實(shí)時(shí)示波器的ADC為8位,把模擬信號(hào)轉(zhuǎn)化為2的8次方(即256個(gè))量化的級(jí)別,如果顯示的波形只占屏幕很小一部分,則增大了量化的間隔,減小了精度。準(zhǔn)確的測量需要調(diào)節(jié)示波器的垂直刻度(必要時(shí)使用可變增益),盡量讓波形占滿屏幕,充分利用ADC的垂直動(dòng)態(tài)范圍。圖一中藍(lán)色波形信號(hào)(C3)的垂直刻度是紅色波形(C2)四分之一,對(duì)兩個(gè)波形的上升沿進(jìn)行放大(F1=ZOOM(C2), F2=ZOOM(C3)),然后對(duì)放大的波形作長余輝顯示,可以看到,右上部分的波形F1有較多的階梯(即量化級(jí)別),而右下部分波形F2的階梯較少(即量化級(jí)別更少)。如果對(duì)C2和C3兩個(gè)波形測量一些垂直或水平參數(shù),可以發(fā)現(xiàn)占滿屏幕的信號(hào)C2的測量參數(shù)統(tǒng)計(jì)值的標(biāo)準(zhǔn)偏差小于后者的。說明了前者測量結(jié)果的一致性和準(zhǔn)確性。圖一 示波器ADC的量化誤差
通常測量電源噪聲,使用有源或者無源探頭,探測某芯片的電源引腳和地引腳,然后示波器設(shè)置為長余輝模式,最后用兩個(gè)水平游標(biāo)來測量電源噪聲的峰峰值。這種方法有一個(gè)問題是,常規(guī)的無源探頭或有源探頭,其衰減因子為10,和示波器連接后,垂直刻度的最小檔位為20mV,在不使用DSP濾波算法時(shí),探頭的本底噪聲峰峰值約為30mV。以DDR2的1.8V供電電壓為例,如果按5%來算,其允許的電源噪聲為90mV,探頭的噪聲已經(jīng)接近待測試信號(hào)的1/3,所以,用10倍衰減的探頭是無法準(zhǔn)確測試1.8V/1.5V等小電壓。在實(shí)際測試1.8V噪聲時(shí),垂直刻度通常為5-10mV/div之間。

另外,探頭的GND和信號(hào)兩個(gè)探測點(diǎn)的距離也非常重要,當(dāng)兩點(diǎn)相距較遠(yuǎn),會(huì)有很多EMI噪聲輻射到探頭的信號(hào)回路中(如圖二所示),示波器觀察的波形包括了其他信號(hào)分量,導(dǎo)致錯(cuò)誤的測試結(jié)果。所以要盡量減小探頭的信號(hào)與地的探測點(diǎn)間距,減小環(huán)路面積。
對(duì)于小電源的電壓測試,我們推薦衰減因子為1的無源傳輸線探頭。使用這類探頭時(shí),示波器的最小刻度可達(dá)2mV/div,不過其動(dòng)態(tài)范圍有限,偏移的可調(diào)范圍限制在+/-750mV之間,所以,在測量常見的1.5V、1.8V電源時(shí),需要隔直電路(DC-Block)后再輸入到示波器。
如圖三為力科PP066探頭,該探頭的地與信號(hào)的間距可調(diào)節(jié),探頭的地針可彈性收縮,操作起來非常方便。通過同軸電纜加隔直模塊后連接到示波器通道上。也可以把同軸電纜剝開,直接把電纜的信號(hào)和地焊接到待測試電源的電源和地上。在圖四中把SMA接頭的同軸電纜的一段剝開,焊接到了電腦主板的DDR2供電的1.8V上面,測量其電源噪聲。圖四 測量某電腦主板DDR2的1.8V的電源噪聲在電源噪聲測試中,還存在示波器通道輸入阻抗選擇的爭議。示波器的通道有DC50/DC1M/AC1M三個(gè)選項(xiàng)可選(對(duì)于高端示波器,可能只有DC50一個(gè)選項(xiàng))。一些工程師認(rèn)為應(yīng)該使用1M歐的輸入阻抗,另一些認(rèn)為50歐的輸入阻抗更合適。
在測試中我們發(fā)現(xiàn):如果使用1倍衰減的探頭測試,當(dāng)示波器通道輸入為1M歐時(shí),通常其測量出的電源噪聲大于50歐輸入阻抗的。原因是:高頻電源噪聲從同軸電纜傳輸?shù)绞静ㄆ魍ǖ篮?,?dāng)示波器輸入阻抗是50歐時(shí),同軸電纜的特性阻抗50歐與通道的完全匹配,沒有反射;而通道輸入阻抗為1M歐時(shí),相當(dāng)于是高阻,根據(jù)傳輸線理論,電源噪聲發(fā)生反射。這樣,導(dǎo)致1M歐輸入阻抗是測試的電源噪聲高于50歐的。所以,測量小電源噪聲推薦使用50歐的輸入阻抗。
在準(zhǔn)確測量到電源噪聲的波形后,可以計(jì)算出噪聲的峰峰值,如果電源噪聲過大,則需要分析噪聲來自哪些頻率,這時(shí),需要對(duì)電源噪聲的波形進(jìn)行FFT,轉(zhuǎn)化為頻譜進(jìn)行分析。FFT中信號(hào)時(shí)間的長度決定了FFT后的頻譜分辨率,在力科示波器中,支持業(yè)界最大的128M個(gè)點(diǎn)的FFT,能準(zhǔn)確定位電源噪聲來自于哪些頻率。圖五 測量某3.3V的電源噪聲
如圖五所示為某光模塊的3.3V電源的噪聲。其噪聲的頻譜最高點(diǎn)的頻率為311.6KHz。這個(gè)光模塊輸出的1.25Gbps光信號(hào)的抖動(dòng)測試中發(fā)現(xiàn)了同樣的312KHz的周期性抖動(dòng)。在圖六中可以看到,把1.25G串行信號(hào)的周期性抖動(dòng)分解后(Pj breakdown菜單),發(fā)現(xiàn)312KHz的周期性抖動(dòng)為63.7皮秒,在眼圖中也明顯可以觀察到抖動(dòng)。通過這個(gè)案例說明,電源噪聲很可能導(dǎo)致一些高速信號(hào)的眼圖和抖動(dòng)變差。對(duì)電源噪聲進(jìn)行頻譜分析,能有效定位噪聲的來源,指引調(diào)試的方向。圖六:某1.25Gbps信號(hào)的抖動(dòng)和眼圖測試結(jié)果
在使用示波器測量電源噪聲時(shí),為了保證測量精度,需要選擇足夠的采樣率和采集時(shí)間。

推薦采樣率在500MSa/s以上,這樣奈科斯特頻率為250M,可以測量到250MHz以下的電源噪聲。對(duì)于目前最普及的板級(jí)電源完整性分析,250M的帶寬已足夠。低于這個(gè)頻率的噪聲可以使用陶瓷電容、PCB上緊耦合的電源和地平面來濾波。而高于這個(gè)頻率的只能在封裝和芯片級(jí)的去耦措施來完成了。

波形的采集時(shí)間越長,則轉(zhuǎn)化為頻譜后的頻譜分辨率(即delta f)越小。通常我們的開關(guān)電源工作在10KHz以上,如果頻譜分辨率要達(dá)到100Hz的話,至少需要采集10ms長的波形,在500MSa/s采樣率時(shí),示波器需要500MSa/s * 10 ms = 5M pts的存儲(chǔ)深度。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

共模電流與差模電流的本質(zhì)區(qū)別,在理解共模電感的作用前,需明確兩種電流模式的定義:共模電流:指在兩條信號(hào)線上以相同方向、相同幅度流動(dòng)的干擾電流。

關(guān)鍵字: 共模電流

電子系統(tǒng)中的噪聲有多種形式。無論是從外部來源接收到的,還是在PCB布局的不同區(qū)域之間傳遞,噪聲都可以通過兩種方法無意中接收:寄生電容和寄生電感。

關(guān)鍵字: 寄生電容

傳感器是智能冰箱的“感知器官”,它能夠?qū)崟r(shí)監(jiān)測冰箱內(nèi)部的溫度、濕度和食物狀態(tài),確保食物始終處于最佳儲(chǔ)存環(huán)境。

關(guān)鍵字: 傳感器

車規(guī)級(jí)傳感器的電磁兼容性(EMC)成為保障行車安全與系統(tǒng)可靠性的核心指標(biāo)。CISPR 25標(biāo)準(zhǔn)作為全球汽車行業(yè)公認(rèn)的EMC測試規(guī)范,對(duì)傳感器的輻射發(fā)射與抗擾度提出了嚴(yán)苛要求。本文從標(biāo)準(zhǔn)解讀、測試方法、工程實(shí)踐三個(gè)維度,系...

關(guān)鍵字: 傳感器 EMC測試

在5G通信技術(shù)中,大規(guī)模多輸入多輸出(MIMO)技術(shù)是提升頻譜效率、擴(kuò)大網(wǎng)絡(luò)容量和改善用戶體驗(yàn)的核心手段。作為大規(guī)模MIMO的典型配置,32T32R(32發(fā)射天線×32接收天線)陣列通過波束成形技術(shù)實(shí)現(xiàn)信號(hào)的定向傳輸,結(jié)...

關(guān)鍵字: 5G MIMO測試

模擬數(shù)據(jù)(Analog Data)是由傳感器采集得到的連續(xù)變化的值,例如溫度、壓力,以及目前在電話、無線電和電視廣播中的聲音和圖像。

關(guān)鍵字: 模擬數(shù)據(jù)

電容是電路元件中的一種基本無源器件,其主要功能是儲(chǔ)存電能并在電路中起著濾波、耦合、諧振、儲(chǔ)能等多種作用。

關(guān)鍵字: 電容 無源器件

近年來,隨著電源集成度的提升,多家廠商都推出了PFC和LLC二合一的Combo控制器,將兩顆芯片獨(dú)立實(shí)現(xiàn)的功能整合成一顆芯片,簡化電源設(shè)計(jì)。

關(guān)鍵字: 電源集成

電路設(shè)計(jì)中,耦合方式的選擇直接影響信號(hào)保真度與系統(tǒng)穩(wěn)定性。AC耦合與DC耦合看似僅是電容的“有無”之別,實(shí)則涉及信號(hào)頻率、直流偏置、動(dòng)態(tài)范圍等多維度的技術(shù)權(quán)衡。本文將從信號(hào)特性出發(fā),解析兩種耦合方式的適用場景,為工程師提...

關(guān)鍵字: AC耦合 DC耦合

高速數(shù)字電路向56Gbps PAM4、112Gbps NRZ等超高速率演進(jìn),電磁兼容性(EMC)問題已從輔助設(shè)計(jì)環(huán)節(jié)躍升為決定產(chǎn)品成敗的核心要素。傳統(tǒng)“設(shè)計(jì)-測試-整改”的串行模式因周期長、成本高,難以滿足AI服務(wù)器、8...

關(guān)鍵字: 高速數(shù)字電路 EMC
關(guān)閉