女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁 > 通信技術(shù) > 通信技術(shù)
[導(dǎo)讀]對射頻識別標(biāo)簽芯片系統(tǒng)結(jié)構(gòu)及工作原理進(jìn)行分析,設(shè)計應(yīng)用于符合ISO18000-6C/B兩種標(biāo)準(zhǔn)的UHF RFID標(biāo)簽芯片的模擬射頻前端,主要包括整流電路、穩(wěn)壓電路、調(diào)制/解調(diào)電路、上電復(fù)位及時鐘產(chǎn)生電路。模擬射頻前端芯片采用TSMCO.18μm CMOS混合信號工藝流片驗(yàn)證。測試結(jié)果表明,所研制的模擬射頻前端性能滿足UHF RFID標(biāo)簽芯片系統(tǒng)要求。

0 引言
    超高頻無線射頻識別(RFID)技術(shù)具有非接觸式、識別速度快、作用距離遠(yuǎn)、存儲容量大、可多卡識別等優(yōu)點(diǎn),已廣泛應(yīng)用于生產(chǎn)、零售、交通、物流等行業(yè)。UHF RFID無源標(biāo)簽芯片作為超高頻射頻識別系統(tǒng)的核心組成部分,近年來一直是國內(nèi)外研究的熱點(diǎn)。研究和設(shè)計低功耗、小尺寸、高動態(tài)范圍的模擬射頻前端,可以解決UHF RFID標(biāo)簽芯片的關(guān)鍵技術(shù)難題,并推動超高頻標(biāo)簽芯片快速發(fā)展。
    在此針對ISO18000-6C/B標(biāo)準(zhǔn),研究和分析了UHF RFID無源標(biāo)簽芯片的系統(tǒng)組成以及模擬射頻前端的電路方案。基于Cadence Spectre設(shè)計仿真平臺和TSMCO.18μm CMOS混合信號工藝,對模擬射頻前端的整流電路、穩(wěn)壓電路、ASK調(diào)制/解調(diào)電路、上電復(fù)位電路、時鐘產(chǎn)生電路等核心模塊進(jìn)行了設(shè)計與仿真,通過MPW項目流片實(shí)現(xiàn)。最后,給出了芯片各模塊的測試結(jié)果。

1 標(biāo)簽芯片工作原理與系統(tǒng)結(jié)構(gòu)
    UHF RFID系統(tǒng)主要由后臺數(shù)據(jù)處理計算機(jī)、RFID閱讀器和電子標(biāo)簽三部分組成。當(dāng)處在閱讀器的電磁場范圍內(nèi)時,無源電子標(biāo)簽通過電磁場耦合獲得能量,利用整流電路將交流轉(zhuǎn)變?yōu)橹绷鳎瑢?nèi)部其他模塊進(jìn)行供電。標(biāo)簽通過ASK解調(diào)電路從射頻脈沖中解調(diào)出指令和數(shù)據(jù),并送至基帶數(shù)字電路模塊?;鶐?shù)字電路根據(jù)接收到的指令進(jìn)行一系列數(shù)據(jù)操作。標(biāo)簽通過控制天線接口的阻抗,從而改變天線接口的反射系數(shù)來對數(shù)據(jù)信號進(jìn)行調(diào)制。數(shù)字電路的系統(tǒng)時鐘由本地振蕩器產(chǎn)生。UHF RFID標(biāo)簽芯片系統(tǒng)框圖如圖1所示。


    系統(tǒng)包括模擬射頻前端和數(shù)字部分。模擬射頻前端主要實(shí)現(xiàn)電源產(chǎn)生、調(diào)制/解調(diào)、時鐘產(chǎn)生、上電復(fù)位等功能。數(shù)字控制部分控制著標(biāo)簽內(nèi)部數(shù)據(jù)的流向,按照接收到的指令,控制標(biāo)簽進(jìn)行狀態(tài)轉(zhuǎn)換、存儲及返回所需要的內(nèi)容,包括命令解析、數(shù)據(jù)編碼、數(shù)據(jù)存儲、讀/
寫等功能。
    對于UHF RFID無源標(biāo)簽芯片,難點(diǎn)在于如何實(shí)現(xiàn)超低功耗的電路設(shè)計。由于芯片不帶電池,芯片內(nèi)部各模塊工作所需電源完全依靠感應(yīng)閱讀器所發(fā)送的電磁波,整流電路將天線獲得的射頻能量進(jìn)行轉(zhuǎn)化并存儲在儲能電容中的直流能量。例如按照北美標(biāo)準(zhǔn),閱讀器的等效全向輻射功率(EIRP)為36 dBm。在自由空間中,電磁波在5 m距離處衰減約45.5 dB,標(biāo)簽所獲得的最大功率不超過100μW,而供芯片內(nèi)部使用的功率僅為幾十μW。為了達(dá)到最大的閱讀距離,需要在兩個方面做出努力:減小模擬和數(shù)字部分的功耗;提高整流電路的整流效率。

2 模擬射頻前端各模塊電路設(shè)計
2.1 整流電路

    整流電路的功能主要是將天線感應(yīng)的射頻能量轉(zhuǎn)化為供后級各模塊使用的直流能量,整流電路的電路結(jié)構(gòu)如圖2所示。N級整流電路包含2N只整流二極管和2N只耦合電容,與輸出相連的電容為儲能電容。天線的兩端RFin+和RFin-直接或者通過匹配網(wǎng)絡(luò)連接到整流電路的輸入端,通常RFin-端接地。下標(biāo)為奇數(shù)的電容與下標(biāo)為偶數(shù)的電容分別在輸入電壓的負(fù)半周期和正半周期進(jìn)行充電、儲能,從而產(chǎn)生直流電壓,表達(dá)式為:

式中:VDD是整流電路的輸出直流電壓;VpRF是輸入射頻信號的幅度;VfD整流二極管的正向電壓;N是采用的整流級數(shù)。從式(1)中可以看出,整流二極管上消耗的電壓越小,輸出電壓越大,也意味著其尺寸越大,將導(dǎo)致其反向泄露電流增大,從而降低整流效率。因此,設(shè)計中需要對各種指標(biāo)進(jìn)行折中。根據(jù)UHF RFID標(biāo)簽芯片系統(tǒng)需要,所設(shè)計的整流電路可以實(shí)現(xiàn)高低兩個電平輸出。


2.2 穩(wěn)壓電路
    穩(wěn)壓電路是將整流電路輸出直流電壓穩(wěn)定在特定電平上,為整個標(biāo)簽芯片提供穩(wěn)定的工作電壓。由于標(biāo)簽空間位置的不確定性,使其與讀/寫器的距離相應(yīng)不固定,以至于標(biāo)簽天線接收的功率變化可達(dá)l 000倍以上。因此,需設(shè)計穩(wěn)壓電路,以保證標(biāo)簽芯片不會由于物理位置變化引起直流工作電壓幅度的改變,從而增大標(biāo)簽芯片的工作動態(tài)范圍。
    穩(wěn)壓電路的結(jié)構(gòu)如圖3所示。穩(wěn)壓電路的基本原理是將輸出電壓的和芯片內(nèi)部的基準(zhǔn)電壓進(jìn)行比較,比較的結(jié)果通過誤差放大器放大,輸入到調(diào)整管的柵極,改變調(diào)整管的柵源電壓,調(diào)節(jié)其輸出電流來跟蹤負(fù)載,從而使低壓差線性穩(wěn)壓器的輸出電壓穩(wěn)定。


2.3 上電復(fù)位電路
    射頻標(biāo)簽供電電源建立成功后,必須給電子標(biāo)簽中的數(shù)字電路提供一個啟動信號來使電路處于Stand by狀態(tài),等待數(shù)據(jù)幀的開始。這個啟動信號由上電復(fù)位電路提供。
    上電復(fù)位電路結(jié)構(gòu)如圖4所示。


    工作原理如下:隨著電源電壓VDD的升高,由于C1和反相器中4個長溝道PMOS的延遲作用,使得采樣電路輸出的低電壓VB經(jīng)過反相器得到的C點(diǎn)電壓VC與電源電壓VDD之間的壓差大于晶體管MP10的閾值電壓,且能為C2贏得足夠的充電時間。當(dāng)充電到電容C2上的電壓VE大于整形電路第一個反相器中晶體管MN6的閾值電壓時,晶體管MN6導(dǎo)通,輸出電壓VF翻轉(zhuǎn)為低電平。再經(jīng)過反相,在整形電路的輸出端可以得到復(fù)位信號的上升沿。充電完成后,緊接著C2通過晶體管MN;放電,通常放電速度比充電速度更慢。當(dāng)放電到C2上的電壓小于晶體管MN6的閾值電壓,晶體管MN6截止,輸出電壓VF翻轉(zhuǎn)為高電平,此時在整形電路的輸出端得到復(fù)位信號的下降沿。
2.4 解調(diào)電路
    對于超高頻RFID標(biāo)簽芯片的ASK解調(diào)電路,通常采用包絡(luò)檢波方式。解調(diào)電路的框圖如圖5所示。按照18000-6C/B標(biāo)準(zhǔn),電路輸入信號的包絡(luò)頻率范圍為40~160 kHz,脈寬失真小于10%。包絡(luò)檢波器由一級Dickson電路和R2,C3組成的低通濾波器組成。產(chǎn)生的包絡(luò)信號先送入比較器的負(fù)端,再通過低通濾波為比較器提供參考電壓。比較器采用遲滯比較器,具有良好噪聲抑制性能、高動態(tài)范圍等特點(diǎn)。采用兩級反相器目的是將輸出電壓進(jìn)行整形,產(chǎn)生規(guī)則的方波信號。


    隨著RFID標(biāo)簽距離閱讀器遠(yuǎn)近不同,輸入的射頻信號幅度可能在幾百mV到幾V之間變化,包絡(luò)檢波器輸出的直流電平會有很大變化。在包絡(luò)檢波器輸出端并聯(lián)一個泄流電路,其作用是在輸入信號過大時對后端比較電路起到泄流穩(wěn)壓的保護(hù)作用,從而避免后端電路工作失常。為了降低功耗,泄流電路在輸入電平較小時需保持關(guān)斷狀態(tài)。
2.5 調(diào)制電路
    根據(jù)標(biāo)準(zhǔn)要求采用反向散射的調(diào)制方法,通過改變芯片輸入阻抗來改變芯片與天線間的反射系數(shù),從而實(shí)現(xiàn)ASK調(diào)制。天線阻抗與芯片輸入阻抗在“0”狀態(tài)下共軛匹配,而在“1”狀態(tài)下存在一定失配。圖6為調(diào)制電路框圖,電容C1并聯(lián)在天線兩端,晶體管M1等效為一個開關(guān),通過控制開關(guān)的開啟,決定了電容是否接入芯片輸入端,從而改變了芯片的輸入阻抗,最終實(shí)現(xiàn)ASK調(diào)制。


2.6 時鐘產(chǎn)生電路
    時鐘產(chǎn)生電路采用環(huán)形振蕩器電路,并加入電壓和溫度補(bǔ)償電路,保證在不同的工作電壓和溫度下,頻率偏移在規(guī)定的范圍(±1%)內(nèi),電路框圖如圖7所示。電壓補(bǔ)償主要依靠一個電壓基準(zhǔn)電路產(chǎn)生一個基準(zhǔn)電壓源,提供給五級環(huán)形振蕩器作為工作電壓,這樣就能保證在輸入電壓在O.9~1.1 V變化范圍內(nèi),最大頻偏能滿足要求。環(huán)形振蕩器的振蕩頻率呈正溫度系數(shù)特性,故需加入一個負(fù)溫度系數(shù)的補(bǔ)償電路,并優(yōu)化五級環(huán)形振蕩器的有源器件的寬長比,使其溫度系數(shù)恰與自身的溫度系數(shù)互補(bǔ),使時鐘產(chǎn)生電路輸出頻率穩(wěn)定。

3 測試結(jié)果
    基于Cadence Spectre設(shè)計仿真平臺和TSMC0.18μm CMOS混合信號工藝,對UHF RFID標(biāo)簽芯片模擬射頻前端進(jìn)行設(shè)計和仿真,并通過MPW項目流片實(shí)現(xiàn)。模擬射頻前端芯片不含測試焊盤的核心電路的芯片面積為490μm×420μm,圖8是芯片實(shí)物照片。


    使用Agilent E4432B信號源對模擬射頻前端進(jìn)行激勵,輸入載頻為915 MHz的ASK調(diào)制信號。圖9為整流電路輸出波形,并測得穩(wěn)壓電路高、低輸出電壓分別穩(wěn)定在1.O V和1.8 V。圖10解調(diào)電路的輸出波形,可看出該電路能正確解調(diào)40~160 kHz的ASK調(diào)制信號。圖11(a)是上電復(fù)位電路輸出波形,脈沖寬度大于30μs。時鐘產(chǎn)生電路輸出如圖11(b)所示,可看出波形近似方波且占空比約50%。使用AgilentN5230A矢量網(wǎng)絡(luò)分析儀給芯片輸入頻率為915 MHz,功率-5 dBm的測試信號,測得“O”和“1”兩種狀態(tài)下標(biāo)簽反射系數(shù)相差12%。



4 結(jié)語
    這里設(shè)計了符合ISO18000-6C/B標(biāo)準(zhǔn)的UHFRFID無源標(biāo)簽芯片模擬射頻前端。模擬射頻前端包括整流器、穩(wěn)壓電路、調(diào)制解調(diào)器、時鐘電路和上電復(fù)位電路等模塊。采用TSMCO.18μm CMOS混合信號工藝設(shè)計、仿真、流片,其核心面積為490μm×420 μm。測試結(jié)果表明,該模擬射頻前端各模塊性能能夠較好地滿足UHF RFID標(biāo)簽芯片的系統(tǒng)指標(biāo)要求。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

在半導(dǎo)體制造中,《國際器件和系統(tǒng)路線圖》將5nm工藝定義為繼7nm節(jié)點(diǎn)之后的MOSFET 技術(shù)節(jié)點(diǎn)。截至2019年,三星電子和臺積電已開始5nm節(jié)點(diǎn)的有限風(fēng)險生產(chǎn),并計劃在2020年開始批量生產(chǎn)。

關(guān)鍵字: 芯片 華為 半導(dǎo)體

北京時間10月18日消息,富士康周二表示,希望有一天能夠?yàn)樘厮估旧a(chǎn)汽車。眼下,富士康正在加大電動汽車的制造力度,以實(shí)現(xiàn)業(yè)務(wù)多元化。

關(guān)鍵字: 富士康 芯片 半導(dǎo)體 特斯拉

近日,中國工程院院士倪光南在數(shù)字世界??闹赋?,一直以來,我國芯片產(chǎn)業(yè)在“主流 CPU”架構(gòu)上受制于人,在數(shù)字經(jīng)濟(jì)時代,建議我國積極抓住時代機(jī)遇,聚焦開源RISC-V架構(gòu),以全球視野積極謀劃我國芯片產(chǎn)業(yè)發(fā)展。

關(guān)鍵字: 倪光南 RISC-V 半導(dǎo)體 芯片

新能源汽車市場在2022年有望達(dá)到600萬輛規(guī)模,為芯片產(chǎn)業(yè)帶來較大的發(fā)展機(jī)遇。2022年,我國芯片供應(yīng)比去年有所緩解,但仍緊張。中期來看,部分類別芯片存在較大結(jié)構(gòu)性短缺風(fēng)險,預(yù)計2022年芯片產(chǎn)能缺口仍難以彌補(bǔ)。這兩年...

關(guān)鍵字: 新能源 汽車 芯片

汽車芯片和半導(dǎo)體領(lǐng)域要深度地融合,不僅僅是簡單的供需關(guān)系,應(yīng)該是合作關(guān)系,把汽車芯片導(dǎo)入到整車廠的應(yīng)用。為緩解汽車產(chǎn)業(yè)“缺芯”,國內(nèi)汽車芯片產(chǎn)業(yè)正探索越來越多的方式完善生態(tài)。為了促進(jìn)汽車半導(dǎo)體產(chǎn)業(yè)的快速發(fā)展,彌補(bǔ)國內(nèi)相關(guān)...

關(guān)鍵字: 智能化 汽車 芯片

汽車“缺芯”之下,國產(chǎn)芯片的未來是一片藍(lán)海。在過去很長一段時間內(nèi),“缺芯”“少魂”是我國汽車企業(yè)的短板弱項,車規(guī)級芯片、操作系統(tǒng)的自主可控程度不高。其中,我國車規(guī)級芯片自給率小于5%,且多以低端產(chǎn)品為主,關(guān)鍵芯片均受制于...

關(guān)鍵字: 智能化 汽車 芯片

之前,美國運(yùn)營商AT&T曾宣布,今年年底推出5G網(wǎng)絡(luò),而隨著時間的推移,2019年會有越來越多的國家和地區(qū)商用5G網(wǎng)絡(luò),在這樣的大環(huán)境下,芯片廠商提前布局也就是情理之中的事情了。

關(guān)鍵字: 運(yùn)營商 5G網(wǎng)絡(luò) 芯片

日本車用MCU大廠瑞薩電子發(fā)布公告稱,該公司將于8月31日完全關(guān)閉滋賀工廠,并將土地轉(zhuǎn)讓給日本大坂的ARK不動產(chǎn)株式會社。瑞薩電子曾在2018年6月宣布,滋賀工廠將在大約兩到三年內(nèi)關(guān)閉,該工廠的硅生產(chǎn)線已于2021年3月...

關(guān)鍵字: MCU ARK 芯片

目前,各式芯片自去年第4季起開始緊缺,帶動上游晶圓代工產(chǎn)能供不應(yīng)求,聯(lián)電、力積電、世界先進(jìn)等代工廠早有不同程度的漲價,以聯(lián)電、力積電漲幅最大,再加上疫情影響,產(chǎn)品制造的各個環(huán)節(jié)都面臨著極為緊張的市場需求。推估今年全年漲幅...

關(guān)鍵字: 工廠 芯片 晶圓代工

伴隨新能源汽車、自動駕駛技術(shù)等的迅速發(fā)展,汽車芯片正成為業(yè)內(nèi)熱議的話題之一,要協(xié)調(diào)穩(wěn)定市場、確保芯片供應(yīng)。從供給上來看,要梳理關(guān)鍵領(lǐng)域芯片供需情況,引導(dǎo)國外汽車芯片企業(yè)來華投資,建立芯片及重要原材料應(yīng)急儲備機(jī)制。在穩(wěn)定市...

關(guān)鍵字: 新能源 汽車 芯片

通信技術(shù)

120582 篇文章

關(guān)注

發(fā)布文章

編輯精選

技術(shù)子站

關(guān)閉