女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁 > 半導(dǎo)體 > 半導(dǎo)體
[導(dǎo)讀]PORTLAND, Ore. — Quantum dots are already revolutionizing displays, such as those used in widely praised Kindle Fire e-readers whose backlight uses a quantum-dot enhanced film (QDEF) manufactured by

PORTLAND, Ore. — Quantum dots are already revolutionizing displays, such as those used in widely praised Kindle Fire e-readers whose backlight uses a quantum-dot enhanced film (QDEF) manufactured by Nanosys. Now researchers are poised to revolutionizesolar energycollectors with quantum dots.

By harvesting light coming from the sun with embedded quantum dots, the researchers hope to turn windows into efficient solar-panel concentrators. Their strategy is to place photovoltaic (PV) solar cells around the edges of quantum-dot-impregnated windows, thus turning them into luminescent solar concentrators (LSCs). Los Alamos National Laboratory, in cooperation with Italy's University of Milano-Bicocca (UNIMIB), recently demonstrated optical efficiencies for such LSC windows of greater than 10 percent and an effective concentration factor of more than four.

Normally transparent quantum-dot-impregnated window pane material luminescences under ultraviolet illumination.

(Source: Los Alamos National Laboratory)

"Our device is a light-harvester -- a concentrator that captures light from a large area and directs it to a much smaller PV cell," Victor Klimov, lead researcher on the project at the Center for Advanced Solar Photophysics (CASP) at Los Alamos National Laboratory, told EETimes.

For the proof-of-concept demonstration, Klimov's team embedded the quantum dots into a transparent plastic material with PV solar cells around its edges, with the help of colleagues at UNIMIB, including Sergio Brovelli, who worked at Los Alamos National Labs until 2012 but who is now a faculty member at UNIMIB.

"The quantum dots re-emit absorbed solar light at a longer wavelength, which then propagates in the regime of total internal reflection towards the PV cell installed at the edge of the LSC device," says Klimov.

Quantum dots are highly efficient emitters, demonstrating emission efficiencies approaching 100 percent, but previous attempts to use them in LSCs of practical dimensions were not successful. The problem was that the quantum dots reabsorbed many of the re-emitted photons that were intended to be harvested by the edge-mounted PV cells. To solve that problem, Klimov and colleagues engineered quantum dots that shifted the wavelength of the re-emitted photons using an approach of Stokes-shift-engineering, named after the 19th century Irish physicist George Stokes.

A giant Stokes-shift was engineered into the quantum dots by combining two different materials, cadmium selenide (CdSe) and cadmium sulfide (CdS), in a core-shell geometry. A small CdSe core served as an emitter while a thick CdS shell played the role of a light-harvesting antenna. Since CdS has a wider bandgap than CdSe, the light re-emitted by the CdSe core exhibited a large low-energy shift with respect to the onset of strong optical absorption defined by the CdS shell. This strategy resulted in a giant Stokes shift, which helped eliminate losses to re-absorption.

The researchers demonstrated that the resultant LSC devices had light harvesting efficiencies of about 10 percent, with virtually no losses to reabsorption for slabs measuring tens of centimeters. And simulations showed that practical dimensions of these devices can be extended to over a meter.

Cadmium-selenium (CdSe) quantum dots absorb photons, then re-emit the energy at a different wavelength from their cadmium-sulfur (CdS) inner cores when embedded in a polymethylmethacrylate (PMMA) window pane that directs the concentrated solar energy to phovoltaic cells at the window's edge.

The Los Alamos Nation Lab researchers created the thick shell CdSe/CdS quantum dots, while their Italian partners embedded them into the large slabs of PMMA. Details can be found in the Nature Photonics paper titled "Large-area luminescent solar concentrators based on Stokes-shift-engineered nanocrystals in a mass-polymerized PMMA matrix."

Funding was provided by the US Department of Energy's Office of Science through the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center at Los Alamos National Laboratory. The work at UNIMIB was funded by Fondazione Cariplo and the European Community’s Seventh Framework Programme.

— R. Colin Johnson, Advanced Technology Editor,EE Times

老杳吧推出微信公共平臺,想閱讀更多老杳文章,請訂閱老杳吧微信,資訊內(nèi)容:手機、集成電路、面板、專利、老杳獨家視點及手機概念股相關(guān)業(yè)務(wù)進展等;微信平臺使用幫助發(fā)送“help”。關(guān)注辦法:微信關(guān)注‘集微網(wǎng)’、‘jiweinet’或掃描以下二維碼:[!--empirenews.page--]

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉