“智能車隊(duì)”新想法能行多遠(yuǎn)?
交通:讓汽車加入“智能車隊(duì)”計(jì)劃,讓車流像火車車廂一般行進(jìn),已取得了小步成功。但他們面臨的不僅僅是技術(shù)問題。
說(shuō)服司機(jī)放棄私駕改選公共交通實(shí)在是一項(xiàng)艱巨之工作。由此,有沒有一項(xiàng)技術(shù)可讓人們?nèi)源粼谲囍?,但在長(zhǎng)途駕駛中脫開人工操控,這項(xiàng)技術(shù)的成功面有多大?這是一個(gè)歐洲科研項(xiàng)目,目的是找到一種方法,把汽車用無(wú)線方式串聯(lián)起來(lái),實(shí)現(xiàn)“半自治”的車行隊(duì)列,這一項(xiàng)目亦被稱為“公路列車”或“智能車隊(duì)”。
這個(gè)主意是通過加入“智能車隊(duì)”在一個(gè)專業(yè)領(lǐng)駕的操控下沿高速公路列隊(duì)前行。其余的駕駛者將能脫開方向盤坐享旅程。就象乘客一樣,他們可以看書、看電影、上網(wǎng)、甚至打一個(gè)盹。帶來(lái)的好處是減少擁堵、降低油耗,并在一定程度上降低疲勞駕駛,“智能車隊(duì)”可能會(huì)使道路更為安全。
由歐盟發(fā)起的“環(huán)保的安全公路列車隊(duì)”(SARTRE)項(xiàng)目,是由英國(guó)里卡多公司統(tǒng)籌協(xié)調(diào)的,預(yù)計(jì)耗資640萬(wàn)歐元(約合910萬(wàn)美元),該項(xiàng)目負(fù)責(zé)人湯姆羅賓森解釋說(shuō)此項(xiàng)目對(duì)環(huán)保的助益減少了阻力(降低了能耗)。降低的阻力主要源自于降低的空氣阻力,這是一級(jí)方程式車手和自行車賽車手早已稔熟的伎倆。在一個(gè)快速行進(jìn)的物體后產(chǎn)生一個(gè)氣流低壓區(qū),意味著在此區(qū)間行進(jìn)物體要維持行其速度不變所需付出的能量更小。然而,在高速公路上要緊貼著某輛卡車后行進(jìn)是極其危險(xiǎn)的。但現(xiàn)在有了無(wú)線技術(shù)的幫助、在計(jì)算機(jī)的控制下,使二車距離比以往大大降低卻是可行的。尾隨車輛所遇較低阻力,使油耗亦有可觀的降低。
羅賓遜先生說(shuō),“智能車隊(duì)”中的車距將會(huì)非常小,其電腦控制系統(tǒng)會(huì)回應(yīng)任何一個(gè)突然剎車或其它危險(xiǎn),其反應(yīng)速度遠(yuǎn)快于任何一個(gè)人類司機(jī),從而避免碰撞。車距降低使道路容車率增加,能減少交通堵塞。
所有這些都需要大量技術(shù)支撐。任何有意加入“智能車隊(duì)”的車輛必須明確其目的地,從而辨識(shí)出附近某一合適的車隊(duì)以加入并沿準(zhǔn)確方向前行。然后,車輛跟到“智能車隊(duì)”后方,此時(shí)標(biāo)準(zhǔn)無(wú)線系統(tǒng)開始工作(這是專為車間通信所設(shè)計(jì)的IEEE 802.11p系統(tǒng)),這后方車輛進(jìn)入伺服狀態(tài)被領(lǐng)駕車輛所驅(qū)動(dòng),領(lǐng)駕車輛是由具有相關(guān)資質(zhì)的駕駛員所駕駛的一輛卡車或大巴車。隨后,直到它離開車隊(duì),后方車輛一直被領(lǐng)駕車輛所控制。
這聽起來(lái)雄心勃勃,但它已經(jīng)不僅僅只停留在理論層面。今年早些時(shí)候SARTRE項(xiàng)目成員進(jìn)行了首次路試。它的初衷很簡(jiǎn)單:由一輛卡車領(lǐng)駕一輛汽車,兩車速度約達(dá)到50kph(合31英里每小時(shí))。第一輪測(cè)試成功后,他們把速度提高到70kph,今年夏天他們還將進(jìn)行的第一輪多車試驗(yàn),由三輛汽車和兩輛卡車組成。汽車制造商沃爾沃作為SARTRE項(xiàng)目成員之一,沃爾沃的主動(dòng)安全功能技術(shù)總監(jiān)埃里克寇林格表示,研究組將準(zhǔn)備將此項(xiàng)目移出測(cè)試跑道。 他說(shuō):“今年秋季和冬季,我們將進(jìn)一步完善控制系統(tǒng),如果取得成功,我們將用相同的系統(tǒng)做測(cè)試,預(yù)計(jì)于2012年夏季在西班牙的公共道路進(jìn)行路試。”
“智能車隊(duì)”并不是一個(gè)新點(diǎn)子。在上個(gè)世紀(jì)90年代的圣地亞哥,一個(gè)稱為“捷徑”的項(xiàng)目進(jìn)行了小規(guī)模的測(cè)試,它在高速公路一側(cè)按上微處理器,原理同電磁感應(yīng)軌道用以引導(dǎo)車輛沿公路行駛。這一想法沒有實(shí)現(xiàn),因?yàn)樗靸r(jià)實(shí)在昂貴。但SARTRET系統(tǒng)有所不同,羅賓遜先生說(shuō),它并不需要資金投入進(jìn)行任何道路基礎(chǔ)建設(shè)或改造。
此外,除了無(wú)線通信系統(tǒng),SARTRE的工作原理還利用了作動(dòng)器和傳感器,這些早已在許多現(xiàn)代汽車中存在,運(yùn)用于譬如適應(yīng)性巡航控制、自動(dòng)制動(dòng)、車道偏離系統(tǒng),相應(yīng)硬件有雷達(dá)、紅外線感應(yīng)器、以及攝相頭??芰指裣壬f(shuō)“我們用到傳感器和部分控制系統(tǒng),但加入新的算法和指令。”所以一旦車輛加入到“智能車隊(duì)”這些系統(tǒng)使車輛串聯(lián)行駛變得非常容易。但在首駕中的司機(jī)必須接受培訓(xùn),取得許可證并因領(lǐng)駕而得到一定報(bào)酬。除了掌好方向盤,他還將考慮到來(lái)自交通狀態(tài)的影響,諸如換車道、轉(zhuǎn)彎等。剩下的部分只通過軟件來(lái)實(shí)現(xiàn)。
寇林格先生坦承該項(xiàng)技術(shù)尚不夠完備,他們需要精確地計(jì)算出實(shí)施策略,使車輛安全地加入或離開,哪怕它處于車隊(duì)中間位置。同樣地,當(dāng)領(lǐng)頭車輛到達(dá)目的地脫離車隊(duì),此時(shí)需要另一輛車取而代之,(這些都需要精密計(jì)算)。研究人員還必須決定車隊(duì)車距,使之達(dá)到最省油,又保證最安全。
羅賓遜先生及寇林格先生認(rèn)為“智能車隊(duì)”的成功并不只是技術(shù)層面的問題,而在于駕駛者的真正需求。寇林格相信,駕駛?cè)巳簩?duì)于自動(dòng)駕駛的接受度正在提高。這還取決于不同的時(shí)段,譬如每天上下班高峰時(shí)段,人們可能更能接受自動(dòng)駕駛(脫開方向盤來(lái)做一些自己的事)。然而,現(xiàn)今的體制仍要求司機(jī)無(wú)時(shí)無(wú)刻地關(guān)注并控制其車輛,在很多地方在駕駛過程中接聽手機(jī)是違反交通法的。因此(為配合“智能車隊(duì)”的實(shí)現(xiàn)),這些相關(guān)法規(guī)也必須加以調(diào)整。羅賓遜先生說(shuō),這可能還需要十年左右才能實(shí)現(xiàn)。(編譯:Kevin)
附原文:
PERSUADING drivers to give up their cars in favour of public transport has always been an uphill struggle. So would a technology that lets drivers remain in their cars, but asks them to relinquish control on long journeys, have any greater chance of success? That is what a European project is hoping to find out by getting cars to link up wirelessly into semi-autonomous convoys, also known as road trains or “platoons”。
The idea is that by joining platoons as they snake along motorways under the control of a professional lead driver, motorists will be able to sit back and enjoy the ride. As passengers they could catch up on some reading, watch a film, surf the internet or even have a snooze. The benefits would come from reduced congestion and lower fuel consumption. Somewhat counter-intuitively, platooning might also make roads safer.
The environmental benefits come from reducing drag, says Tom Robinson of Ricardo, a British company which is co-ordinating the €6.4m ($9.1m) Safe Road Trains for the Environment (SARTRE) project, funded by the European Commission. The reduced drag is the result of slipstreaming, a trick exploited by Formula One drivers and racing cyclists. The low-pressure area in the slipstream of a moving object means less energy is needed to maintain the same speed just behind it. Trying to do this behind a big lorry on a motorway is extremely dangerous. But with the aid of wireless technology it should be possible for cars to drive much closer together, under computer control, than would normally be advisable. The lower drag they encounter should improve fuel consumption considerably.
The gap between platooning vehicles will be small, but computer-controlled systems would respond to any sudden braking or other hazards far more quickly than a human driver could and thus avoid collisions, says Mr Robinson. The close spacing would allow more cars to fit on the road, reducing congestion.
All this requires a lot of technology. Any car wishing to join a platoon would specify its desired destination, making it possible to identify a nearby platoon heading the right way. The car then pulls up behind the moving platoon and a wireless standard developed specifically for communications between vehicles, called IEEE 802.11p, enables the car to be enslaved by the lead vehicle, probably a lorry or coach with a qualified driver. The car stays under the control of the leader until its driver wishes to leave the platoon.
As ambitious as this sounds, it is more than just theory. Earlier this year the members of the SARTRE project carried out their first road test. The initial goal was modest: to put a single car under the control of a lorry, with both travelling at 50kph (31mph)。 After the success of these first tests the speed was pushed up to 70kph, and this summer the first multiple-vehicle tests will begin with up to three cars and two lorries. The researchers will then be ready to leave the test track, says Erik Coelingh, head of active-safety functions for Volvo, a carmaker that is one of the SARTRE members. “During the autumn and winter we will refine the controls, and if we succeed we would like to test the same system on public roads in Spain during summer 2012,” he says.
Platooning is not a new idea. In the 1990s a project in San Diego called PATH carried out small-scale tests of a system that involved placing induction loops in the road which acted as electromagnetic rails to guide vehicles along the highway. The idea never took off because it was prohibitively expensive. But SARTRE is different, says Mr Robinson, because it does not require any changes to the road infrastructure.
Moreover, aside from the wireless-communication system, SARTRE works by taking advantage of the actuators and sensors that already exist in many modern cars, such as adaptive cruise control, automatic braking and lane-departure systems, which use radar, infra-red sensors and cameras. “We reuse the sensors and part of the control system, but add new algorithms,” says Mr Coelingh. So once a car has joined a platoon these systems make it relatively easy to stay in line. The driver at the front would be trained, licensed and paid to lead. As well as steering, he would have to take account of the platoon’s impact on other traffic when changing lanes or turning. The rest would be taken care of by software.
The technology is not quite there yet, concedes Mr Coelingh. Strategies still need to be precisely worked out to enable vehicles to join or leave safely, even if they are in the middle of the platoon. Similarly, methods will be needed to allow the lead vehicle to dissolve the platoon on reaching its destination or to allow another lead vehicle to take over. The researchers must also determine how closely packed together the cars should be to get the best fuel savings and highest level of safety.
Mr Robinson and Mr Coelingh accept that the success of platoons is more than just a question of whether or not the technology can be made to work. The real question is whether drivers really want it. Driver attitudes towards automation are softening, Mr Coelingh believes. And there are occasions, such as during a daily commute, when motorists might welcome not having to drive. However, drivers are currently required to be in control of their vehicles at all times, and in many places it is illegal to use a mobile phone when at the wheel. So laws will also have to be changed, says Mr Robinson, which could take a decade or so.(來(lái)源《經(jīng)濟(jì)學(xué)人》)
LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。
關(guān)鍵字: 驅(qū)動(dòng)電源在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。
關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...
關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。
關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...
關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...
關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LEDLED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。
關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...
關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源
關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。
關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源