女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁(yè) > 物聯(lián)網(wǎng) > 智能應(yīng)用
[導(dǎo)讀] 隨著大數(shù)據(jù)上升為國(guó)家戰(zhàn)略,大數(shù)據(jù)產(chǎn)業(yè)發(fā)展對(duì)經(jīng)濟(jì)社會(huì)的價(jià)值和影響得到廣泛認(rèn)可,大數(shù)據(jù)技術(shù)逐漸滲透到各行各業(yè),成為重要的生產(chǎn)要素和戰(zhàn)略資產(chǎn)。數(shù)據(jù)量的增長(zhǎng),手動(dòng)完成任務(wù)與自動(dòng)化產(chǎn)生的生產(chǎn)力差距越來(lái)越大,這使得以人工智能和機(jī)器學(xué)習(xí)為基礎(chǔ)的自動(dòng)化趨勢(shì)越來(lái)越有市場(chǎng)。機(jī)器學(xué)習(xí)可以幫助縮小這一差距嗎?數(shù)據(jù)管理和數(shù)據(jù)轉(zhuǎn)換之間有重要的區(qū)別。數(shù)據(jù)轉(zhuǎn)換是數(shù)據(jù)集成過(guò)程中的第一步,其目標(biāo)是將異類數(shù)據(jù)轉(zhuǎn)換為通用的全局模式,組織可以提前制定該模式。自動(dòng)腳本通常用于將美元轉(zhuǎn)換成歐元,或?qū)⒂㈡^轉(zhuǎn)換成公斤。盡管大數(shù)據(jù)分析技術(shù)取得了驚人的進(jìn)步,但我們?cè)诤艽蟪潭壬先孕枰謩?dòng)來(lái)完成重要任務(wù),例如數(shù)據(jù)轉(zhuǎn)換和數(shù)據(jù)管理。

 隨著大數(shù)據(jù)上升為國(guó)家戰(zhàn)略,大數(shù)據(jù)產(chǎn)業(yè)發(fā)展對(duì)經(jīng)濟(jì)社會(huì)的價(jià)值和影響得到廣泛認(rèn)可,大數(shù)據(jù)技術(shù)逐漸滲透到各行各業(yè),成為重要的生產(chǎn)要素和戰(zhàn)略資產(chǎn)。數(shù)據(jù)量的增長(zhǎng),手動(dòng)完成任務(wù)與自動(dòng)化產(chǎn)生的生產(chǎn)力差距越來(lái)越大,這使得以人工智能和機(jī)器學(xué)習(xí)為基礎(chǔ)的自動(dòng)化趨勢(shì)越來(lái)越有市場(chǎng)。機(jī)器學(xué)習(xí)可以幫助縮小這一差距嗎?數(shù)據(jù)管理和數(shù)據(jù)轉(zhuǎn)換之間有重要的區(qū)別。數(shù)據(jù)轉(zhuǎn)換是數(shù)據(jù)集成過(guò)程中的第一步,其目標(biāo)是將異類數(shù)據(jù)轉(zhuǎn)換為通用的全局模式,組織可以提前制定該模式。自動(dòng)腳本通常用于將美元轉(zhuǎn)換成歐元,或?qū)⒂㈡^轉(zhuǎn)換成公斤。盡管大數(shù)據(jù)分析技術(shù)取得了驚人的進(jìn)步,但我們?cè)诤艽蟪潭壬先孕枰謩?dòng)來(lái)完成重要任務(wù),例如數(shù)據(jù)轉(zhuǎn)換和數(shù)據(jù)管理。

 

坦率地說(shuō),數(shù)據(jù)轉(zhuǎn)換和數(shù)據(jù)管理問(wèn)題頗具挑戰(zhàn)性。各行各業(yè)的公司都渴望將機(jī)器學(xué)習(xí)與他們的數(shù)據(jù)庫(kù)結(jié)合使用,以獲得競(jìng)爭(zhēng)優(yōu)勢(shì)。但是,數(shù)據(jù)不干凈、數(shù)據(jù)未集成、不可比較和不匹配的數(shù)據(jù)問(wèn)題層出不窮,使公司的大數(shù)據(jù)計(jì)劃陷入困境。

許多從事機(jī)器學(xué)習(xí)的數(shù)據(jù)科學(xué)家花費(fèi)了90%的時(shí)間來(lái)查找、集成、修復(fù)和清理其輸入數(shù)據(jù)。 人們似乎沒(méi)有意識(shí)到數(shù)據(jù)科學(xué)家不再是數(shù)據(jù)科學(xué)家,而是成為了數(shù)據(jù)集成商。不過(guò)也有一個(gè)好消息,機(jī)器學(xué)習(xí)本身可以幫助機(jī)器學(xué)習(xí)。這個(gè)想法是利用算法的預(yù)測(cè)能力來(lái)模擬人類數(shù)據(jù)處理。這不是100%完美的解決方案,但它可以幫助緩解工作強(qiáng)度,讓數(shù)據(jù)科學(xué)家轉(zhuǎn)向真正的創(chuàng)新工作。您可以在任何你能買到的地方購(gòu)買ML,通過(guò)使用ML來(lái)來(lái)幫助您完成ETL的轉(zhuǎn)換部分。

 

轉(zhuǎn)換和管理數(shù)據(jù)

雖然它們?cè)谀承┓矫媸窍嗨频?,但是?shù)據(jù)管理和數(shù)據(jù)轉(zhuǎn)換之間有重要的區(qū)別。數(shù)據(jù)轉(zhuǎn)換是數(shù)據(jù)集成過(guò)程中的第一步,其目標(biāo)是將異類數(shù)據(jù)轉(zhuǎn)換為通用的全局模式,組織可以提前制定該模式。自動(dòng)腳本通常用于將美元轉(zhuǎn)換成歐元,或?qū)⒂㈡^轉(zhuǎn)換成公斤。

轉(zhuǎn)換階段之后,分析人員開始管理和分析數(shù)據(jù)。第一步通常涉及運(yùn)行“match/merge”函數(shù)來(lái)創(chuàng)建與相同實(shí)體對(duì)應(yīng)的記錄集群,例如將不同但拼寫相似的名稱分組在一起。像“編輯距離”這樣的概念可以用來(lái)確定兩個(gè)不同實(shí)體之間的距離。然后使用更多的規(guī)則來(lái)比較各種實(shí)體,以確定給定記錄的最佳值。公司可以聲明最后一項(xiàng)是最好的,或者使用一組值中的公共值,這樣就可以產(chǎn)生最佳數(shù)據(jù)。

幾十年來(lái),這種通用的兩步過(guò)程已在許多數(shù)據(jù)倉(cāng)庫(kù)中使用,并且在現(xiàn)代的數(shù)據(jù)湖中繼續(xù)使用。但是,ETL和數(shù)據(jù)管理在很大程度上未能跟上今天的數(shù)據(jù)量以及企業(yè)面臨的挑戰(zhàn)規(guī)模。

例如,這需要預(yù)先定義一個(gè)全局模式,這阻礙了許多ETL的進(jìn)行,這些工作試圖集成更多的數(shù)據(jù)源。在有些時(shí)候,程序員無(wú)法跟上必須設(shè)置的數(shù)據(jù)轉(zhuǎn)換規(guī)則的數(shù)量。如果您有10個(gè)數(shù)據(jù)源,您還可以這樣做,但是,如果您有10,000個(gè),那就不太可能了。顯然,這需要一種不同的方法。

在小型企業(yè)中,您可能可以提前創(chuàng)建全局?jǐn)?shù)據(jù)模式,然后在整個(gè)組織中強(qiáng)制使用它,從而省去了昂貴的ETL和數(shù)據(jù)管理項(xiàng)目的成本,一起放在數(shù)據(jù)倉(cāng)庫(kù)中。但是,在大型組織中,這種自上而下的方法不可避免地會(huì)失敗。

即使大型企業(yè)中的業(yè)務(wù)部門彼此非常相似,它們記錄數(shù)據(jù)的方式也會(huì)有微小的差異。這些微小差異需要加以考慮,然后才能對(duì)其進(jìn)行有意義的分析,這只是企業(yè)數(shù)據(jù)性質(zhì)的反映。因此業(yè)務(wù)靈活性需要一定程度的獨(dú)立性,這意味著每個(gè)業(yè)務(wù)部門都建立自己的數(shù)據(jù)中心。

例如,以豐田汽車歐洲公司(Toyota Motor Europe)為例,該公司在每個(gè)業(yè)務(wù)國(guó)家都有獨(dú)立的客戶支持組織。該公司希望為250個(gè)數(shù)據(jù)庫(kù)中的所有實(shí)體創(chuàng)建一個(gè)主記錄,其中包含40種不同語(yǔ)言的3000萬(wàn)條記錄。

豐田汽車歐洲公司面臨的問(wèn)題是,ETL和數(shù)據(jù)管理項(xiàng)目的規(guī)模是巨大的,如果按照傳統(tǒng)方式進(jìn)行,將消耗大量的資源。該公司決定使用Tamr來(lái)幫助解決機(jī)器學(xué)習(xí)的挑戰(zhàn),而不是數(shù)據(jù)轉(zhuǎn)換和使用數(shù)據(jù)管理過(guò)程。ETL最大的問(wèn)題是已經(jīng)預(yù)先定義了全局模式,如何大規(guī)模地做到這一點(diǎn)是個(gè)問(wèn)題。需要使用機(jī)器學(xué)習(xí)進(jìn)行自下向上的匹配、自下而上地構(gòu)造目標(biāo)模式,從規(guī)模上看,這是唯一可行的方式。

機(jī)器學(xué)習(xí)仍然需要大量的數(shù)據(jù)和處理能力,您通常需要一個(gè)最優(yōu)秀的員工來(lái)幫助指導(dǎo)軟件獲得正確的數(shù)據(jù)分析結(jié)果與決策見解。不同的供應(yīng)商之間該如何選擇。不同國(guó)家或地區(qū)的供應(yīng)商提供的解決方案不同,而且出于一些宏觀因素,會(huì)出現(xiàn)不同的選擇。出于安全考慮,這些數(shù)據(jù)問(wèn)題不能完全外包給其他公司,所以不要指望完全用機(jī)器學(xué)習(xí)來(lái)處理數(shù)據(jù),人在其中的作用還是非常重要的。人與機(jī)器學(xué)習(xí)合作才能夠使您的數(shù)據(jù)集成和管理效率最大化。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

液壓舵機(jī)殼體是航空液壓操縱系統(tǒng)的核心零件 , 內(nèi)部包含大量復(fù)雜流道 。傳統(tǒng)的流道路徑人工設(shè)計(jì)方法效率低下 , 結(jié)果一致性差 。針對(duì)該問(wèn)題 , 提出了一種基于混合近端策略優(yōu)化(HPP0算法)的流道路徑規(guī)劃算法 。通過(guò)分析流...

關(guān)鍵字: 液壓流道規(guī)劃 機(jī)器學(xué)習(xí) HPP0算法 減材制造 液壓舵機(jī)殼體

深入探索這一個(gè)由 ML 驅(qū)動(dòng)的時(shí)域超級(jí)采樣的實(shí)用方法

關(guān)鍵字: 機(jī)器學(xué)習(xí) GPU 濾波器

傳統(tǒng)的網(wǎng)絡(luò)安全防護(hù)手段多依賴于預(yù)先設(shè)定的規(guī)則和特征庫(kù),面對(duì)日益復(fù)雜多變、層出不窮的新型網(wǎng)絡(luò)威脅,往往力不從心,難以做到及時(shí)且精準(zhǔn)的識(shí)別。AI 技術(shù)的融入則徹底改變了這一局面。機(jī)器學(xué)習(xí)算法能夠?qū)A康木W(wǎng)絡(luò)數(shù)據(jù)進(jìn)行深度學(xué)習(xí),...

關(guān)鍵字: 網(wǎng)絡(luò)安全 機(jī)器學(xué)習(xí) 輔助決策

人工智能(AI)和機(jī)器學(xué)習(xí)(ML)是使系統(tǒng)能夠從數(shù)據(jù)中學(xué)習(xí)、進(jìn)行推理并隨著時(shí)間的推移提高性能的關(guān)鍵技術(shù)。這些技術(shù)通常用于大型數(shù)據(jù)中心和功能強(qiáng)大的GPU,但在微控制器(MCU)等資源受限的器件上部署這些技術(shù)的需求也在不斷增...

關(guān)鍵字: 嵌入式系統(tǒng) 人工智能 機(jī)器學(xué)習(xí)

北京——2025年7月30日 自 2018 年以來(lái),AWS DeepRacer 已吸引全球超過(guò) 56 萬(wàn)名開發(fā)者參與,充分印證了開發(fā)者可以通過(guò)競(jìng)技實(shí)現(xiàn)能力成長(zhǎng)的實(shí)踐路徑。如今,亞馬遜云科技將通過(guò)亞馬遜云科技AI聯(lián)賽,將這...

關(guān)鍵字: AI 機(jī)器學(xué)習(xí)

2025年7月28日 – 專注于引入新品的全球電子元器件和工業(yè)自動(dòng)化產(chǎn)品授權(quán)代理商貿(mào)澤電子 (Mouser Electronics) 持續(xù)擴(kuò)展其針對(duì)機(jī)器學(xué)習(xí) (ML) 工作優(yōu)化的專用解決方案產(chǎn)品組合。

關(guān)鍵字: 嵌入式 機(jī)器學(xué)習(xí) 人工智能

在這個(gè)高速發(fā)展的時(shí)代,無(wú)論是健身、競(jìng)技、興趣活動(dòng),還是康復(fù)訓(xùn)練,對(duì)身體表現(xiàn)的感知與理解,正成為提升表現(xiàn)、實(shí)現(xiàn)突破的關(guān)鍵。如今,先進(jìn)技術(shù)正為我們架起一座橋梁,將每一次身體活動(dòng)轉(zhuǎn)化為有價(jià)值的洞察,幫助我們更聰明地訓(xùn)練、更高效...

關(guān)鍵字: 傳感器 機(jī)器學(xué)習(xí) IMU

在科技飛速發(fā)展的當(dāng)下,邊緣 AI 正經(jīng)歷著一場(chǎng)深刻的變革。從最初的 TinyML 微型機(jī)器學(xué)習(xí)探索低功耗 AI 推理,到邊緣推理框架的落地應(yīng)用,再到平臺(tái)級(jí) AI 部署工具的興起以及垂類模型的大熱,我們已經(jīng)成功實(shí)現(xiàn)了 “讓...

關(guān)鍵字: 機(jī)器學(xué)習(xí) 邊緣 AI 無(wú)人機(jī)

在AI算力需求指數(shù)級(jí)增長(zhǎng)的背景下,NVIDIA BlueField-3 DPU憑借其512個(gè)NPU核心和400Gbps線速轉(zhuǎn)發(fā)能力,為機(jī)器學(xué)習(xí)推理提供了革命性的硬件卸載方案。通過(guò)將PyTorch模型量化至INT8精度...

關(guān)鍵字: PyTorch 機(jī)器學(xué)習(xí) DPU

中國(guó),北京,2025年7月17日——隨著AI迅速向邊緣領(lǐng)域挺進(jìn),對(duì)智能邊緣器件的需求隨之激增。然而,要在小尺寸的微控制器上部署強(qiáng)大的模型,仍是困擾眾多開發(fā)者的難題。開發(fā)者需要兼顧數(shù)據(jù)預(yù)處理、模型選擇、超參數(shù)調(diào)整并針對(duì)特定...

關(guān)鍵字: 邊緣AI 嵌入式 機(jī)器學(xué)習(xí)
關(guān)閉