女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁 > 嵌入式 > 嵌入式動態(tài)
[導(dǎo)讀]機(jī)器視覺在工業(yè)自動化系統(tǒng)中的應(yīng)用已經(jīng)有一定的歷史,它取代了傳統(tǒng)的人工檢查,提高了生產(chǎn)質(zhì)量和產(chǎn)量。 我們已經(jīng)看到了相機(jī)在計算機(jī)、移動設(shè)備和汽車等日常生活設(shè)備中的迅速普及,但是機(jī)器視覺的最大進(jìn)步莫過于處理能力。隨著處理器的性能以每兩年翻一番的速度不斷提升,以及多核CPU和FPGA等并行處理技術(shù)日益受到關(guān)注,視覺系統(tǒng)設(shè)計人員現(xiàn)在可以應(yīng)用復(fù)雜的算法來可視化數(shù)據(jù),并創(chuàng)建出更加智能的系統(tǒng)。

機(jī)器視覺在工業(yè)自動化系統(tǒng)中的應(yīng)用已經(jīng)有一定的歷史,它取代了傳統(tǒng)的人工檢查,提高了生產(chǎn)質(zhì)量和產(chǎn)量。 我們已經(jīng)看到了相機(jī)在計算機(jī)、移動設(shè)備和汽車等日常生活設(shè)備中的迅速普及,但是機(jī)器視覺的最大進(jìn)步莫過于處理能力。隨著處理器的性能以每兩年翻一番的速度不斷提升,以及多核CPU和FPGA等并行處理技術(shù)日益受到關(guān)注,視覺系統(tǒng)設(shè)計人員現(xiàn)在可以應(yīng)用復(fù)雜的算法來可視化數(shù)據(jù),并創(chuàng)建出更加智能的系統(tǒng)。

性能的提高意味著設(shè)計人員可以獲得更高的數(shù)據(jù)吞吐量,從而實現(xiàn)更快速的圖像采集,使用更高分辨率的傳感器,并充分利用市場上具有最高動態(tài)范圍的一些新款相機(jī)。性能的提高不僅可讓設(shè)計人員更快速地采集圖像,而且還能更快速地處理圖像。預(yù)處理算法(如閾值和濾波)或處理算法(如模式匹配)也可以更快速地執(zhí)行。最終設(shè)計人員能夠比以往更快地基于可視化數(shù)據(jù)制定決策。

德州奧斯汀NI總部數(shù)據(jù)采集和控制產(chǎn)品市場經(jīng)理,主要負(fù)責(zé)機(jī)器視覺領(lǐng)域的Brandon Treece認(rèn)為,隨著視覺系統(tǒng)越來越多地集成最新一代多核CPU和強(qiáng)大FPGA,視覺系統(tǒng)設(shè)計人員需要了解使用這些處理元件的好處和得失。他們不僅需要在正確的硬件上運(yùn)行正確的算法,還需要了解哪些架構(gòu)最適合作為其設(shè)計的基礎(chǔ)。

內(nèi)聯(lián)處理和協(xié)處理

在研究哪種類型的算法最適合哪個處理元件之前,您應(yīng)該了解每個應(yīng)用最適合的架構(gòu)類型。在開發(fā)基于CPU和FPGA的異構(gòu)架構(gòu)的視覺系統(tǒng)時,需要考慮兩個主要的使用情況: 嵌入式處理和協(xié)處理。

如果是FPGA協(xié)處理,F(xiàn)PGA和CPU將共同工作,共享處理負(fù)載。這種架構(gòu)最常用于GigE Vision和USB3 Vision相機(jī),因為它們的采集邏輯最好是在CPU上實現(xiàn):

您可以使用CPU采集圖像,然后通過直接存儲器訪問(DMA)將其發(fā)送到FPGA,以便FPGA可以執(zhí)行諸如濾波或顏色平面提取等操作。然后,您可以將圖像發(fā)送回CPU以進(jìn)行更高級的操作,例如光學(xué)字符識別(OCR)或模式匹配。

在某些情況下,您可以在FPGA上實現(xiàn)所有的處理步驟,并只將處理結(jié)果發(fā)送回CPU。這使得CPU可以將更多的資源用于運(yùn)動控制、網(wǎng)絡(luò)通信和圖像顯示等其他操作。

 

圖1.在FPGA協(xié)處理中,圖像使用CPU進(jìn)行采集后,通過DMA發(fā)送到FPGA,然后由FPGA對圖像進(jìn)行處理。

在嵌入式FPGA處理架構(gòu)中,您可以將相機(jī)接口直接連接到FPGA的引腳,以便像素可直接從相機(jī)發(fā)送到FPGA。這種架構(gòu)通常與Camera Link相機(jī)一起使用,因為它們的采集邏輯易于使用FPGA上的數(shù)字電路來實現(xiàn)。 這個架構(gòu)有兩個主要的好處:

首先,與協(xié)處理一樣,在FPGA上執(zhí)行預(yù)處理功能時,可以使用嵌入式處理將部分工作從CPU轉(zhuǎn)移到FPGA。例如,在將像素發(fā)送到CPU之前,可以在FPGA上執(zhí)行高速預(yù)處理,如濾波或閾值處理。這也減少了CPU必須處理的數(shù)據(jù)量,因為CPU上的邏輯只需捕獲感興趣區(qū)域的像素,這最終提高了整個系統(tǒng)的吞吐量。

這種架構(gòu)的第二個好處是可以在不使用CPU的情況下直接在FPGA內(nèi)進(jìn)行高速控制操作。FPGA是控制應(yīng)用的理想選擇,因為它們可以提供非??焖偾腋叨却_定的循環(huán)速率。其中一個例子就是高速分類,其中FPGA向執(zhí)行器發(fā)送脈沖,當(dāng)脈沖通過執(zhí)行器時,執(zhí)行器會對零件進(jìn)行剔除或分類操作。

 

圖2.在嵌入式FPGA處理架構(gòu)中,您可以將相機(jī)接口直接連接到FPGA的引腳,以便像素可直接從相機(jī)發(fā)送到FPGA。

CPU與FPGA視覺算法

在對構(gòu)建異構(gòu)視覺系統(tǒng)的不同方式有了基本了解,您可以看一下在FPGA上運(yùn)行的最佳算法。 首先需要了解CPU和FPGA的工作原理。 為了解釋這一概念,我們假設(shè)一個理論算法可對圖像執(zhí)行四個不同的操作,然后看一下這四個操作部署到CPU和FPGA上時分別是如何運(yùn)行的:

CPU按順序執(zhí)行操作,因此第一個操作必須在整個圖像上運(yùn)行結(jié)束后,第二個操作才能啟動。在本例中,假設(shè)算法中的每個步驟在CPU上運(yùn)行需要6ms; 因此,總處理時間是24ms。

現(xiàn)在考慮在FPGA上運(yùn)行相同的算法。由于FPGA本質(zhì)上是大規(guī)模并行的,所以該算法中的四個操作可以同時對圖像中的不同像素上操作。這意味著接收第一個處理的像素僅需2ms的時間,處理整個圖像需要4ms的時間,因而總處理時間為6ms。這比CPU的執(zhí)行速度快得多。

即使使用FPGA協(xié)處理架構(gòu)并將圖像傳輸?shù)紺PU,整個處理時間(包括傳輸時間)也比單獨使用CPU要短得多。

 

圖3.由于FPGA在本質(zhì)上是大規(guī)模并行的,因此相比CPU,可顯著性能提升。

現(xiàn)在考慮一個真實的例子,比如粒子計數(shù)所需的圖像。

首先需要應(yīng)用卷積濾鏡來銳化圖像。

接下來,通過閾值運(yùn)行圖像以生成二進(jìn)制圖像。這不僅可以通過將其從8位單色轉(zhuǎn)換為二進(jìn)制來減少圖像中的數(shù)據(jù)量,還可以為二進(jìn)制形態(tài)學(xué)應(yīng)用準(zhǔn)備圖像。

最后一步是使用形態(tài)學(xué)來應(yīng)用關(guān)閉功能。 這會去除二進(jìn)制粒子中的任何孔。

如果僅在CPU上執(zhí)行上述算法,則必須在閾值步驟開始之前完成整個圖像的卷積步驟。使用NI公司面向LabVIEW的視覺開發(fā)模塊(Vision Development Module)和基于Xilinx Zynq-7020全可編程SoC的cRIO-9068 CompactRIO控制器時,執(zhí)行上述算法需要的時間為166.7ms。

但是,如果在FPGA上運(yùn)行相同的算法,則可以并行執(zhí)行每個步驟。在FPGA上運(yùn)行相同的算法只需8ms即可完成。請記住,8ms的時間中包括將圖像從CPU發(fā)送到FPGA的DMA傳輸時間,以及算法完成的時間。在某些應(yīng)用中,可能需要將處理后的圖像發(fā)回到CPU,以供應(yīng)用中的其他部分使用。如果加上這個時間的話,整個過程也只需8.5ms。總的來說,F(xiàn)PGA執(zhí)行這個算法要比CPU快20倍。

 

圖4:使用FPGA協(xié)同處理架構(gòu)運(yùn)行視覺算法,性能比僅用CPU運(yùn)行同樣的算法提高了20倍。

那么,為什么不在FPGA上運(yùn)行每個算法呢?

盡管FPGA比CPU更有益于視覺處理,但是要享受這些優(yōu)勢也要做出一定的權(quán)衡。例如,考慮CPU與FPGA的原始時鐘頻率。FPGA的時鐘頻率在100~200MHz數(shù)量級。很顯然,F(xiàn)PGA的時鐘頻率低于CPU的時鐘頻率,CPU可以輕松地在3GHz或更高的頻率下運(yùn)行。因此,如果一個應(yīng)用需要一種必須迭代運(yùn)行的圖像處理算法,并且不能利用FPGA的并行性,那么CPU能夠更快地進(jìn)行處理。

前面討論的示例算法在FPGA上運(yùn)行可以獲得20倍的速度提升。該算法中的每個處理步驟同時對各個像素或一組像素進(jìn)行操作,因此該算法可以利用FPGA的并行優(yōu)勢來處理圖像。 然而,如果算法使用諸如模式匹配和OCR這樣的處理步驟,這些要求立即分析整個圖像,這時候FPGA的優(yōu)勢就比較勉強(qiáng)了。這是由于缺少處理步驟的并行化,以及需要大量內(nèi)存進(jìn)行圖像與模板之間的比對分析。雖然FPGA可以直接訪問內(nèi)部和外部存儲器,但通常情況下,F(xiàn)PGA可用的存儲器數(shù)量遠(yuǎn)不及CPU可用的數(shù)量,或是這些處理操作所需的數(shù)量。

克服編程復(fù)雜性

FPGA用于圖像處理的優(yōu)勢,取決于每種應(yīng)用要求,包括應(yīng)用的特定算法、延遲或抖動要求、I/O同步和功耗等因素。通常使用具有FPGA和CPU的架構(gòu),能充分利用FPGA和CPU各自的優(yōu)勢,并且在性能、成本和可靠性方面都具有競爭優(yōu)勢。然而,實現(xiàn)基于FPGA的視覺系統(tǒng)面臨的最大挑戰(zhàn)之一是克服FPGA的編程復(fù)雜性。視覺算法開發(fā)本質(zhì)上是一個迭代過程。完成任何一項任務(wù)都必須嘗試多種方法。大多數(shù)情況下,需要確定的不是哪種方法可行,而是哪種方法最好,而“最好方法”的判定則因應(yīng)用的不同而不同。例如,對于某些應(yīng)用而言,速度至關(guān)重要;而對于另一些應(yīng)用,則更看重準(zhǔn)確度。至少,需要嘗試幾種不同的方法才能為特定應(yīng)用找到最好的方法。

為了實現(xiàn)生產(chǎn)率的最大化,不論使用哪種處理平臺,都需要立即獲得關(guān)于算法的反饋和基準(zhǔn)測試信息。當(dāng)使用迭代探索性方法時,實時查看算法結(jié)果將會節(jié)省大量時間。什么是正確的閾值?用二進(jìn)制形態(tài)濾波器剔除的顆粒多大或多小? 哪種圖像預(yù)處理算法和算法參數(shù)可以最好地清理圖像? 這些都是開發(fā)視覺算法時的常見問題,而關(guān)鍵在于是否能夠更改并快速查看結(jié)果。然而,傳統(tǒng)的FPGA開發(fā)方法可能會減緩創(chuàng)新,因為算法的每個設(shè)計變化之間需要編譯時間??朔@一點的一個方法是使用一個算法開發(fā)工具,可讓您在同一個環(huán)境進(jìn)行CPU和FPGA的開發(fā)工作,而不會在FPGA編譯時陷入困境。NI Vision Assistant是一種算法工程工具,用于開發(fā)部署到CPU或FPGA上的算法,以幫助您簡化視覺系統(tǒng)設(shè)計。您還可以使用Vision Assistant在目標(biāo)硬件上編譯和運(yùn)行之前測試算法,同時輕松訪問吞吐量和資源利用率信息。

 

圖5. 在具有集成基準(zhǔn)測試的FPGA硬件上使用基于配置的工具開發(fā)算法,可減少等待代碼編譯的時間,從而提高了開發(fā)速度。

因此在考慮誰更適合進(jìn)行圖像處理時,CPU還是FPGA?答案是“視情況而定”。您需要了解應(yīng)用的目標(biāo),才能使用最適合該設(shè)計的處理元件。但是,不管是什么應(yīng)用,基于CPU或FPGA的架構(gòu)及其固有的優(yōu)勢都可以將機(jī)器視覺應(yīng)用的性能提升一個等級。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護(hù)是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機(jī)驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機(jī)驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉