女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁 > 電源 > 數(shù)字電源
[導(dǎo)讀]提出一種基于56F803型DSP的頻率跟蹤與功率調(diào)節(jié)相結(jié)合的周期分段移相控制策略.研究了基于此控制方法的超聲波電源。

摘  要:針對大功率超聲波電源高精度、高功率輸出的特點.對超聲波電源控制策略進行了改進。提出一種基于56F803型DSP的頻率跟蹤與功率調(diào)節(jié)相結(jié)合的周期分段移相控制策略.研究了基于此控制方法的超聲波電源。
關(guān)鍵詞:超聲波電源;頻率跟蹤與功率協(xié)調(diào)控制;超聲波發(fā)生器;數(shù)字信號處理器;56F803


1 引言
    隨著科學(xué)的發(fā)展和技術(shù)的進步.超聲波在超聲焊接、超聲清洗、干燥、霧化、導(dǎo)航、測距、育種等領(lǐng)域的應(yīng)用日趨廣泛?,F(xiàn)在的大功率超聲波電源大都采用頻率跟蹤控制或功率控制。這種單一控制方法不僅會降低超聲波電源效率,而且會影響輸出精度和強度。如何使超聲波電源根據(jù)實際負載實時,動態(tài)調(diào)節(jié)輸出諧振頻率和功率,從而保證超聲波加工等操作的要求具有重要的理論研究和實際應(yīng)用價值。


2  超聲波電源系統(tǒng)的組成
    超聲波電源系統(tǒng)主要由220V電源、整流濾波、高頻逆變單元、匹配網(wǎng)絡(luò)、檢測電路、PWM產(chǎn)生電路和驅(qū)動電路組成,如圖1所示。


    220V單相交流電經(jīng)過二極管不可控整流電路得到直流電壓,然后經(jīng)過由MOSFET組成的高頻逆變電路得到滿足換能器要求的高頻電壓。為減少高頻工作條件下MOSFET的開關(guān)損耗,高頻逆變電路采用帶輔助網(wǎng)絡(luò)的全橋結(jié)構(gòu),如圖2所示。此電路結(jié)構(gòu)解決了傳統(tǒng)零電壓開關(guān)(ZVS)PWM電路變壓器漏感小且滯后橋臂難于實現(xiàn)ZVS的問題。同時,根據(jù)電流增強原理,此電路結(jié)構(gòu)可在任意負載和輸入電壓范圍內(nèi)實現(xiàn)零電壓開關(guān),大大減少了占空比丟失。超聲波電源與換能器匹配的好壞將決定整個電路的控制效果。因此,應(yīng)該對匹配網(wǎng)絡(luò)每個參量(高頻變壓器匝比K,輸出匹配電感Lf)進行嚴格的計算。匹配主要指為使發(fā)生器輸出額定電功率,進行阻抗變換匹配。以及為使發(fā)生器輸出最高效率進行調(diào)諧匹配。


    采用56F803型DSP作為控制電路的核心處理器.它內(nèi)置2 KB SRAM,31.5 KB FLASH,同時,其40 MHz的CPU時鐘頻率比其他單片機具有更強的處理能力。6路PWM信號可以實現(xiàn)高頻逆變電路開關(guān)管MOSFET的移相控制。12位A/D轉(zhuǎn)換器采集可以實現(xiàn)電壓和電流采樣并滿足采樣數(shù)據(jù)精度的要求。利用56F803型DSP中定時器的捕獲功能可以精確計算相位差大小,實現(xiàn)系統(tǒng)的頻率跟蹤控制。串行外設(shè)接口SPI與MCl4489配合使用可以實現(xiàn)對5位半數(shù)碼管的控制.從而實現(xiàn)系統(tǒng)頻率和功率的顯示。另外,56F803還支持C語言與匯編語言混合編程的SDK軟件開發(fā)包.可以實現(xiàn)在線調(diào)試。

    驅(qū)動電路采用IR21lO型驅(qū)動模塊.它具有集成度高,響應(yīng)速度快(tar/taff=120 ns/94 ns),偏值電壓高(<600 V),驅(qū)動能力強,成本低和易于調(diào)試等優(yōu)點。IR2110是基于自舉驅(qū)動原理的功率MOSFET驅(qū)動電路.驅(qū)動信號延時為納秒級,開關(guān)頻率可以從數(shù)十赫茲到數(shù)百千赫茲。同時,IR2110還具有比較完善的保護功能(如欠壓檢測、抗干擾、外部保護閉鎖等)。一個IR2110可以同時驅(qū)動單橋臂的上下二個MOSFET,因此,使用少量分立元件和一路控制電源就可以實現(xiàn)一個橋臂MOSFET 的驅(qū)動控制,這樣大大減小了驅(qū)動電路的體積和成本。


3  系統(tǒng)的控制策略
    超聲波電源系統(tǒng)采用頻率跟蹤和功率調(diào)節(jié)相結(jié)合的控制策略,從而使發(fā)生器在輸出最大功率時可達到最高效率。此種控制策略主要通過控制PWM的周期(也就是控制開關(guān)頻率)和PWM控制波形的移相角來實現(xiàn)。

3.1  頻率跟蹤控制的實現(xiàn)

    采用鎖相法實現(xiàn)頻率跟蹤控制。使用KT20A/P型電流傳感器和KV20A/P型電壓傳感器分別檢測換能器二端的電壓和電流,經(jīng)過滯環(huán)控制得到電壓和電流的方波信號,如圖3所示。該滯環(huán)的回差為lV。然后,對二路方波信號經(jīng)過異或門和D觸發(fā)器得到相位差波形和相位差符號。相位差波形送入DSP的捕獲口,計算出相位差大小T,相位差符號送入GPIOA7口.獲得符號標志量flag。當(dāng)T≠O,flag=o時,表示電壓超前電流。此時,應(yīng)該減小開關(guān)管的頻率f;當(dāng)T≠O,flag=l時,表示電壓滯后電流,此時,應(yīng)該增加開關(guān)管的頻率f,然后把頻率量轉(zhuǎn)化成時間量附給DSP模值寄存器,從而改變輸出PWM信號的周期。


3.2  功率控制的實現(xiàn)
    為了使高頻逆變電路的輸出功率滿足換能器所需要的額定功率,要采用功率控制電路,即采集直流側(cè)的電流信號與給定的電流值進行比較,并對偏差進行數(shù)字PI調(diào)節(jié),從而改變移相控制波形的移相角.進而改變高頻逆變電路的輸出電壓。

    采集直流側(cè)的電流來實現(xiàn)功率控制的主要原因是通過換能器的電壓和電流是交流,需要檢波、濾波等處理過程才能檢測到,這樣比較困難。而直流側(cè)電壓是直流量,基于這種考慮,采用了檢測直流側(cè)電流的方法。采用增量式數(shù)字PI運算減小偏移量,從而達到無靜差控制。直流側(cè)電流實時跟蹤給定電流,改變軟開關(guān)控制信號的移相角,從而改變高頻逆變電路的輸出電壓,當(dāng)移相角增大時輸出電壓也增大,所以高頻逆變電路最終會輸出換能器所要求的功率。

3.3  周期分段實現(xiàn)移相控制

    本系統(tǒng)的開關(guān)采用占空比為50%的PWM信號移相控制。傳統(tǒng)移相控制方法有二種:一種是采用UC3875產(chǎn)生移相控制波形.但電路復(fù)雜,不便于調(diào)試。精度低:另一種是采用單片機,這種方法大部分采用正弦表產(chǎn)生移相波形,程序冗長、復(fù)雜、可讀性差。本系統(tǒng)采用周期分段控制方法實現(xiàn)移相控制波形。在每個PWM周期中把開關(guān)管的控制波形分為4段.每段波形中DSP模值寄存器PWMCM的值等于計數(shù)器PWMVAL的值。變量Count代表輸出的是第幾段波形,當(dāng)Count=l或Count=3時.把波形I或Ⅲ的模值MODUL01(I和Ⅲ的模值相同)賦給模值寄存器。當(dāng)Count=l時,PWM模塊的0通道和3通道分別輸出高電平和低電平。當(dāng)Count=3時.PWM模塊的0通道和2通道分別輸出低電平和高電平;當(dāng)Count=2或Count=4時.把波形Ⅱ或IV的模值MODULO 2(Ⅱ和IV的模值相同)賦給模值寄存器.當(dāng)Count=2時,PWM模塊的O通道和3通道都輸出高電平。當(dāng)Count=4時.PWM模塊的0通道和2通道都輸出低電平。然后,按照上述方式循環(huán)輸出波形,如圖4所示程序框圖。

 

    圖5為主程序框圖。在程序中,頻率跟蹤部分出現(xiàn)相位差時,先給頻率賦一個較大步長(m=100).然后隨著相位差的減?。饾u減小步長.直到相位差為零。


4  實驗結(jié)果分析
    上述超聲波電源的主要參數(shù)是直流側(cè)電壓270 V;開關(guān)頻率fS=20 kHz;高頻變壓器匝比K=38:15;諧振電感Lf=3 mH;換能器采用工作頻率為20 kHz.內(nèi)阻為10Ω ,電容為12 000pF,最大輸出功率為l 500 W。
   
    圖6(a)給出逆變橋輸出電壓和電流實驗波形。

    圖6(b)是Q1管控制波形和漏一源極間電壓實驗波形??梢?,當(dāng)控制信號使開關(guān)管導(dǎo)通時。其漏極和源極之間的電壓已經(jīng)為零,實現(xiàn)了開關(guān)管零電壓導(dǎo)通


    圖6(c)是換能器二端電壓實驗波形。換能器處于固有頻率諧振狀態(tài)時為純阻性負載,所以二端電壓為正弦。


5  結(jié)束語
    采用頻率跟蹤和功率協(xié)調(diào)控制的數(shù)控式新型超聲波電源具有以下特點:
    (1)采用帶輔助電路、電流增強型的ZVS全橋變換器.實現(xiàn)了所有開關(guān)管的ZVS;(2)實現(xiàn)了頻率跟蹤與功率控制的協(xié)調(diào)控制策略,跟蹤精度可達4Hz.能夠滿足超聲焊接、超聲清洗等控制的要求;(3)采用周期分段控制策略實現(xiàn)ZVS的移相控制,使得程序簡化;(4)采用IR2110型集成驅(qū)動,驅(qū)動簡單.減小了系統(tǒng)的體積,降低了成本。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉