女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁(yè) > 消費(fèi)電子 > 消費(fèi)電子
[導(dǎo)讀]簡(jiǎn)介智能手機(jī)的大腦是基帶處理器(Baseband),內(nèi)置微型處理器和專(zhuān)用信號(hào)處理電路。依靠基帶控制器的先進(jìn)設(shè)計(jì),通用輸入/輸出口(GPIO)可用來(lái)實(shí)現(xiàn)按鍵開(kāi)關(guān)功能。目前,專(zhuān)用鍵盤(pán)

簡(jiǎn)介

智能手機(jī)的大腦是基帶處理器(Baseband),內(nèi)置微型處理器和專(zhuān)用信號(hào)處理電路。依靠基帶控制器的先進(jìn)設(shè)計(jì),通用輸入/輸出口(GPIO)可用來(lái)實(shí)現(xiàn)按鍵開(kāi)關(guān)功能。

目前,專(zhuān)用鍵盤(pán)控制器IC已廣泛用于智能手機(jī)。這些專(zhuān)用鍵盤(pán)控制器之所以排上用場(chǎng),原因在于基帶芯片的GPIO資源非常有限。比如,有時(shí)為了節(jié)約成本,用戶(hù)將本來(lái)用于功能電話(huà)的基帶芯片應(yīng)用到了智能手機(jī)的設(shè)計(jì);有時(shí)則是為了減少基帶控制器與鍵盤(pán)之間的連接線(xiàn)數(shù)量,特別是對(duì)于滑蓋手機(jī),基帶處理器和鍵盤(pán)分布在不同的PCB上。鍵盤(pán)控制器通常由I2C總線(xiàn)或SPI總線(xiàn)連接到基帶處理器。

鍵盤(pán)控制器的功能可用現(xiàn)有的GPIO芯片或使用傳統(tǒng)的按鍵掃描微型單片機(jī)實(shí)現(xiàn)。一些專(zhuān)有的鍵盤(pán)控制器也采用傳統(tǒng)的按鍵掃描方式。這篇應(yīng)用筆記則對(duì)傳統(tǒng)的按鍵掃描和低EMI按鍵掃描方案進(jìn)行了比較,并列舉了省去EMI濾波器件帶來(lái)的益處。

傳統(tǒng)的按鍵掃描方案

圖1所示是傳統(tǒng)的按鍵掃描方案,基帶處理器的GPIO鍵盤(pán)控制或某些專(zhuān)用的鍵盤(pán)控制器都采取了這個(gè)方式。有些GPIO引腳設(shè)計(jì)成“列”輸出端口,驅(qū)動(dòng)開(kāi)關(guān)矩陣;有些GPIO引腳設(shè)計(jì)成“行”輸入端口,檢測(cè)按鍵開(kāi)關(guān)的閉合。通常,沒(méi)有按鍵按下時(shí),每個(gè)按鍵上都沒(méi)有電壓。一旦某個(gè)按鍵按下,鍵盤(pán)控制器開(kāi)始掃描所有的按鍵。掃描動(dòng)作通過(guò)逐漸升高“列”電壓的同時(shí),來(lái)輪詢(xún)監(jiān)測(cè)每“行”的輸入電平。一個(gè)8 x 8的開(kāi)關(guān)矩陣可經(jīng)過(guò)64個(gè)時(shí)鐘周期完成一遍掃描。時(shí)鐘頻率的范圍可以設(shè)定在幾十kHz到幾MHz之間,“列”輸出電平在系統(tǒng)的邏輯高和邏輯低之間切換。依據(jù)鍵盤(pán)控制器的供電電壓,邏輯高電平可以從1.8V到3.3V變化。

 

 

圖1.傳統(tǒng)鍵盤(pán)掃描電路。

因?yàn)?ldquo;列”掃描信號(hào)的突然上升和下降造成的電磁輻射可能會(huì)影響EMI測(cè)試,尤其是那些基帶處理器GPIO與鍵盤(pán)之間有較長(zhǎng)布線(xiàn)的設(shè)計(jì)。通常,在“列”輸出端口需要EMI濾波器件來(lái)降低EMI輻射。EMI濾波器可以是一級(jí)RC濾波或者二級(jí)CRC低通濾波(見(jiàn)圖2a和2b)。EMI濾波可以使用分立的無(wú)源器件,也可使用小尺寸TDFN/CSP封裝的EMI濾波器。這顯然會(huì)增加成本并占用空間。

 

 

圖2a和2b. EMI濾波器。

低EMI(無(wú)源掃描)

Maxim的鍵盤(pán)控制器,如MAX7347/MAX7348/MAX7349、MAX7359和MAX7360采用一種獨(dú)特的無(wú)源掃描方式,利用電流源驅(qū)動(dòng)開(kāi)關(guān)矩陣,并通過(guò)檢測(cè)電流來(lái)檢測(cè)按鍵動(dòng)作。圖3說(shuō)明了無(wú)源按鍵掃描的工作原理。一旦按下一個(gè)按鍵,控制器便開(kāi)始掃描所有按鍵。掃描時(shí),在所有“列”端口施加電壓約為0.5V的恒流源,控制器監(jiān)測(cè)流過(guò)依次使能的每“行”電流。因?yàn)槊恳粫r(shí)刻只有一“列”檢測(cè)到電流流過(guò),所以,對(duì)于一個(gè)8 x 8開(kāi)關(guān)矩陣,這種無(wú)源掃描方式也需要經(jīng)過(guò)64個(gè)時(shí)鐘周期完成掃描。在按鍵掃描期間,所有“列”電壓都是靜態(tài)的0.5V (有按鍵按下的列除外),在其對(duì)應(yīng)的“行”端口處于掃描期間,該“列”電壓降低到0V.

 

 

圖3. Maxim的低EMI鍵盤(pán)掃描架構(gòu)。

每“列”端口是由大約20μA的恒流源驅(qū)動(dòng),“行”、“列”端口只在開(kāi)關(guān)接觸的很短時(shí)間消耗電流。因此,與傳統(tǒng)掃描方式相比,無(wú)源掃描因電壓高、低電平變化驅(qū)動(dòng)容性和阻性負(fù)載產(chǎn)生的功耗大大降低。

電磁輻射

1.8V供電時(shí),用0.5V電壓擺幅替代滿(mǎn)幅度(1.8V)驅(qū)動(dòng),可有效降低電磁輻射(降低11dB)。此外,低EMI鍵盤(pán)掃描架構(gòu)中更低的掃描頻率也能幫助降低電磁輻射水平。圖4是傳統(tǒng)方案和低EMI方案的功率頻譜密度(PSD)仿真圖。測(cè)試基于1MHz時(shí)鐘頻率,供電電壓1.8V,上升/下降時(shí)間0.2μs,藍(lán)色曲線(xiàn)代表傳統(tǒng)方案,綠色曲線(xiàn)代表低EMI方案。仿真結(jié)果表明,Maxim低EMI方案的PSD降低15dB.總之,低EMI方案的電磁輻射相比較傳統(tǒng)方式下降15dB.鑒于如此優(yōu)異的輻射指標(biāo),可以省去EMI濾波器。[!--empirenews.page--]

 

 

圖4.鍵盤(pán)掃描PSD仿真,藍(lán)色曲線(xiàn)代表傳統(tǒng)方案,綠色曲線(xiàn)代表Maxim的無(wú)源掃描方案。

波形示例

圖5是MAX7359鍵盤(pán)控制器的波形,深藍(lán)色波形(通道1)為“列”端口波形,淡藍(lán)色波形(通道2)為“行”端口波形。該“行”和“列”交叉的那個(gè)按鍵在大約第26ms時(shí)候按下。經(jīng)過(guò)約2ms的延時(shí),鍵盤(pán)控制器被喚醒。控制器將“列”端口變成電流源,電壓變?yōu)榇蠹s0.5V,并開(kāi)始掃描。在確認(rèn)一個(gè)按鍵依然被按下或者按鍵被釋放前,它會(huì)按設(shè)定的去抖時(shí)間掃描2次。每對(duì)臨近的掃描脈沖,右邊為初始掃描,左邊是第二次的去抖掃描。

 

 

圖5.通道1代表MAX7359“列”端口電壓,通道2代表MAX7359“行”端口電壓。

ESD保護(hù)和電容負(fù)載

連接到鍵盤(pán)的所有端口都暴露在ESD之下,有時(shí)需要達(dá)到15KV,因此需要靜電保護(hù)。MAX7347、MAX7348和MAX7359內(nèi)置±2kV ESD保護(hù),MAX7360內(nèi)置±8kV ESD保護(hù)。外部ESD二極管用來(lái)配合內(nèi)部保護(hù)電路,共同提升防靜電等級(jí)。但ESD二極管增加了端口容性負(fù)載。

通過(guò)用互不相同的“按鍵按下”和“按鍵釋放”編碼,控制器可以識(shí)別同時(shí)發(fā)生的多個(gè)“按鍵按下”事件以及他們的順序。但是,在相應(yīng)的“行”“列”端口,容性負(fù)載會(huì)成倍增加。每個(gè)“列”端口由一個(gè)20μA、±30%的電流源驅(qū)動(dòng)。施加在“行”端口輸出晶體管柵極的正脈沖,將每“行”端口下拉到地。當(dāng)“行”端口處在地電位時(shí),某“列”端口因?yàn)榘存I閉合而連通,也被下拉到地,由此檢測(cè)到一個(gè)按鍵按下的動(dòng)作。

正脈沖施加在“行”端口輸出晶體管柵極,并在稍后在開(kāi)關(guān)的閉合點(diǎn)會(huì)有一個(gè)放電和充電過(guò)程。緊隨正脈沖之后,開(kāi)關(guān)閉合點(diǎn)快速?gòu)?.5V放電到0.當(dāng)正脈沖消失,開(kāi)關(guān)閉合點(diǎn)又被充電到0.5V,基于下面公式:

 

實(shí)際應(yīng)用電路中,“行”、“列”端口電容,包括外加的ESD保護(hù)二極管,都參與到充電過(guò)程。充電時(shí)間長(zhǎng)于掃描周期時(shí),有可能發(fā)生錯(cuò)誤的“按鍵按下”檢測(cè)。被誤檢的按鍵是當(dāng)前這個(gè)被按下的“列”與緊隨的下一個(gè)“行”掃描交叉的那個(gè)按鍵。

為了限制充電時(shí)間少于13μs同時(shí)預(yù)留2.625μs進(jìn)行按鍵檢測(cè),并考慮電流源30%的誤差,根據(jù)下式,總電容應(yīng)該小于364pF:

 

 

每個(gè)端口的電容,包括外置ESD二極管引入的電容,應(yīng)該少于Cport= Ctotal/3 = 121pF,假設(shè)有兩個(gè)按鍵,shift和一個(gè)常用鍵被按下。上面的計(jì)算考慮了2行和1列端口的電容。當(dāng)端口電容為20pF時(shí),允許外置電容是101pF.

上述計(jì)算方法只適用于被按下的按鍵屬于同一“列”的情況。對(duì)于經(jīng)常會(huì)同時(shí)按下鍵,如shift鍵,可以通過(guò)將其定義在獨(dú)立的“行”、“列”端口來(lái)避免端口疊加過(guò)多電容的問(wèn)題。對(duì)于每“列”端口單獨(dú)按下的按鍵,端口允許的電容是:Cport= Ctotal/2 = 182pF.每個(gè)端口的電容是20pF,因此,外部器件的電容可以達(dá)到162pF.

結(jié)論

低EMI鍵盤(pán)控制器方案已經(jīng)在智能手機(jī)應(yīng)用中普遍得到認(rèn)可,相比傳統(tǒng)的鍵盤(pán)掃描方案,可以省去EMI濾波器。使用低EMI開(kāi)關(guān)控制器能提升系統(tǒng)的整體性能并降低成本。負(fù)載電容的估算也適用于絕大多數(shù)手機(jī)硬件的鍵盤(pán)電路。但要避免使用負(fù)載電容很大的ESD外圍器件。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀(guān)點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見(jiàn),不僅增加了維護(hù)成本,還影響了用戶(hù)體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(chē)(EV)作為新能源汽車(chē)的重要代表,正逐漸成為全球汽車(chē)產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車(chē)的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車(chē)的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車(chē) 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車(chē)場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周?chē)娮釉O(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開(kāi)關(guān)電源具有效率高的特性,而且開(kāi)關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開(kāi)關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉