女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁 > 單片機 > 單片機
[導(dǎo)讀].text.global _start_start:ldrsp,=4096bldisable_watch_dogblmemsetupblnand_initldrr0,=0x30000000movr1,#4096movr2,#2048blnand_readldrsp,=0x34000000ldrlr,=halt_loopldrpc,=mainhalt_loop:bhalt_loop#define W

.text
.global _start
_start:

ldrsp,=4096
bldisable_watch_dog
blmemsetup
blnand_init



ldrr0,=0x30000000
movr1,#4096
movr2,#2048
blnand_read

ldrsp,=0x34000000
ldrlr,=halt_loop
ldrpc,=main
halt_loop:
bhalt_loop


#define WATCH_DOG(*(volatile unsigned long *)0x53000000)


#define MEM_CTL_BASE0X48000000

void disable_watch_dog();
void memsetup();


void disable_watch_dog()
{
WATCH_DOG=0;
}


void memsetup()
{
int i=0;
unsigned long *p=(unsigned long *)MEM_CTL_BASE;

unsigned long const mem_cfg_val[]={0x22011110,//BWSCON
0x00000700,//BANKCON0
0x00000700,//BANKCON1
0x00000700,//BANKCON2
0x00000700,//BANKCON3
0x00000700,//BANKCON4
0x00000700,//BANKCON5
0x00018005,//BANKCON6
0x00018005,//BANKCON7
0x008C07A3,//refresh
0x000000b1,//BANKSIZE
0x00000030,//MRSRB6
0x00000030,//MRSRB7
};
for(;i<13;i++)
p[i]=mem_cfg_val[i];
}

#define LARGER_NAND_PAGE

#define GSTATUS1(*(volatile unsigned int *)0x560000B0)
#define BUSY1

#define NAND_SECTOR_SIZE512
#define NAND_BLOCK_MASK(NAND_SECTOR_SIZE - 1)

#define NAND_SECTOR_SIZE_LP2048
#define NAND_BLOCK_MASK_LP(NAND_SECTOR_SIZE_LP - 1)

typedef unsigned int S3C24X0_REG32;



typedef struct {
S3C24X0_REG32NFCONF;
S3C24X0_REG32NFCMD;
S3C24X0_REG32NFADDR;
S3C24X0_REG32NFDATA;
S3C24X0_REG32NFSTAT;
S3C24X0_REG32NFECC;
} S3C2410_NAND;


typedef struct {
S3C24X0_REG32NFCONF;
S3C24X0_REG32NFCONT;
S3C24X0_REG32NFCMD;
S3C24X0_REG32NFADDR;
S3C24X0_REG32NFDATA;
S3C24X0_REG32NFMECCD0;
S3C24X0_REG32NFMECCD1;
S3C24X0_REG32NFSECCD;
S3C24X0_REG32NFSTAT;
S3C24X0_REG32NFESTAT0;
S3C24X0_REG32NFESTAT1;
S3C24X0_REG32NFMECC0;
S3C24X0_REG32NFMECC1;
S3C24X0_REG32NFSECC;
S3C24X0_REG32NFSBLK;
S3C24X0_REG32NFEBLK;
} S3C2440_NAND;


typedef struct {
void (*nand_reset)(void);
void (*wait_idle)(void);
void (*nand_select_chip)(void);
void (*nand_deselect_chip)(void);
void (*write_cmd)(int cmd);
void (*write_addr)(unsigned int addr);
unsigned char (*read_data)(void);
}t_nand_chip;

static S3C2410_NAND * s3c2410nand = (S3C2410_NAND *)0x4e000000;
static S3C2440_NAND * s3c2440nand = (S3C2440_NAND *)0x4e000000;

static t_nand_chip nand_chip;


void nand_init(void);
void nand_read(unsigned char *buf, unsigned long start_addr, int size);


static void nand_reset(void);
static void wait_idle(void);
static void nand_select_chip(void);
static void nand_deselect_chip(void);
static void write_cmd(int cmd);
static void write_addr(unsigned int addr);
static unsigned char read_data(void);


static void s3c2410_nand_reset(void);
static void s3c2410_wait_idle(void);
static void s3c2410_nand_select_chip(void);
static void s3c2410_nand_deselect_chip(void);
static void s3c2410_write_cmd(int cmd);
static void s3c2410_write_addr(unsigned int addr);
static unsigned char s3c2410_read_data();


static void s3c2440_nand_reset(void);
static void s3c2440_wait_idle(void);
static void s3c2440_nand_select_chip(void);
static void s3c2440_nand_deselect_chip(void);
static void s3c2440_write_cmd(int cmd);
static void s3c2440_write_addr(unsigned int addr);
static unsigned char s3c2440_read_data(void);




static void s3c2410_nand_reset(void)
{
s3c2410_nand_select_chip();
s3c2410_write_cmd(0xff);// 復(fù)位命令
s3c2410_wait_idle();
s3c2410_nand_deselect_chip();
}


static void s3c2410_wait_idle(void)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFSTAT;
while(!(*p & BUSY))
for(i=0; i<10; i++);
}


static void s3c2410_nand_select_chip(void)
{
int i;
s3c2410nand->NFCONF &= ~(1<<11);
for(i=0; i<10; i++);
}


static void s3c2410_nand_deselect_chip(void)
{
s3c2410nand->NFCONF |= (1<<11);
}


static void s3c2410_write_cmd(int cmd)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFCMD;
*p = cmd;
}


static void s3c2410_write_addr(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFADDR;

*p = addr & 0xff;
for(i=0; i<10; i++);
*p = (addr >> 9) & 0xff;
for(i=0; i<10; i++);
*p = (addr >> 17) & 0xff;
for(i=0; i<10; i++);
*p = (addr >> 25) & 0xff;
for(i=0; i<10; i++);
}


static unsigned char s3c2410_read_data(void)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFDATA;
return *p;
}




static void s3c2440_nand_reset(void)
{
s3c2440_nand_select_chip();
s3c2440_write_cmd(0xff);// 復(fù)位命令
s3c2440_wait_idle();
s3c2440_nand_deselect_chip();
}


static void s3c2440_wait_idle(void)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFSTAT;
while(!(*p & BUSY))
for(i=0; i<10; i++);
}


static void s3c2440_nand_select_chip(void)
{
int i;
s3c2440nand->NFCONT &= ~(1<<1);
for(i=0; i<10; i++);
}


static void s3c2440_nand_deselect_chip(void)
{
s3c2440nand->NFCONT |= (1<<1);
}


static void s3c2440_write_cmd(int cmd)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFCMD;
*p = cmd;
}


static void s3c2440_write_addr(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFADDR;

*p = addr & 0xff;
for(i=0; i<10; i++);
*p = (addr >> 9) & 0xff;
for(i=0; i<10; i++);
*p = (addr >> 17) & 0xff;
for(i=0; i<10; i++);
*p = (addr >> 25) & 0xff;
for(i=0; i<10; i++);
}


static void s3c2440_write_addr_lp(unsigned int addr)
{
int i;
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFADDR;
int col, page;

col = addr & NAND_BLOCK_MASK_LP;
page = addr / NAND_SECTOR_SIZE_LP;

*p = col & 0xff;
for(i=0; i<10; i++);
*p = (col >> 8) & 0x0f;
for(i=0; i<10; i++);
*p = page & 0xff;
for(i=0; i<10; i++);
*p = (page >> 8) & 0xff;
for(i=0; i<10; i++);
*p = (page >> 16) & 0x03;
for(i=0; i<10; i++);
}



static unsigned char s3c2440_read_data(void)
{
volatile unsigned char *p = (volatile unsigned char *)&s3c2440nand->NFDATA;
return *p;
}



static void nand_reset(void)
{
nand_chip.nand_reset();
}

static void wait_idle(void)
{
nand_chip.wait_idle();
}

static void nand_select_chip(void)
{
int i;
nand_chip.nand_select_chip();
for(i=0; i<10; i++);
}

static void nand_deselect_chip(void)
{
nand_chip.nand_deselect_chip();
}

static void write_cmd(int cmd)
{
nand_chip.write_cmd(cmd);
}
static void write_addr(unsigned int addr)
{
nand_chip.write_addr(addr);
}

static unsigned char read_data(void)
{
return nand_chip.read_data();
}



void nand_init(void)
{
#define TACLS0
#define TWRPH03
#define TWRPH10


if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
{
nand_chip.nand_reset= s3c2410_nand_reset;
nand_chip.wait_idle= s3c2410_wait_idle;
nand_chip.nand_select_chip= s3c2410_nand_select_chip;
nand_chip.nand_deselect_chip = s3c2410_nand_deselect_chip;
nand_chip.write_cmd= s3c2410_write_cmd;
nand_chip.write_addr= s3c2410_write_addr;
nand_chip.read_data= s3c2410_read_data;


s3c2410nand->NFCONF = (1<<15)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0);
}
else
{
nand_chip.nand_reset= s3c2440_nand_reset;
nand_chip.wait_idle= s3c2440_wait_idle;
nand_chip.nand_select_chip= s3c2440_nand_select_chip;
nand_chip.nand_deselect_chip = s3c2440_nand_deselect_chip;
nand_chip.write_cmd= s3c2440_write_cmd;
#ifdef LARGER_NAND_PAGE
nand_chip.write_addr= s3c2440_write_addr_lp;
#else
nand_chip.write_addr= s3c2440_write_addr;
#endif
nand_chip.read_data= s3c2440_read_data;


s3c2440nand->NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);

s3c2440nand->NFCONT = (1<<4)|(1<<1)|(1<<0);
}


nand_reset();
}



void nand_read(unsigned char *buf, unsigned long start_addr, int size)
{
int i, j;

#ifdef LARGER_NAND_PAGE
if ((start_addr & NAND_BLOCK_MASK_LP) || (size & NAND_BLOCK_MASK_LP)) {
return ;
}
#else
if ((start_addr & NAND_BLOCK_MASK) || (size & NAND_BLOCK_MASK)) {
return ;
}
#endif


nand_select_chip();

for(i=start_addr; i < (start_addr + size);) {

write_cmd(0);


write_addr(i);
#ifdef LARGER_NAND_PAGE
write_cmd(0x30);
#endif
wait_idle();

#ifdef LARGER_NAND_PAGE
for(j=0; j < NAND_SECTOR_SIZE_LP; j++, i++) {
#else
for(j=0; j < NAND_SECTOR_SIZE; j++, i++) {
#endif
*buf = read_data();
buf++;
}
}


nand_deselect_chip();

return ;
}


#define GPFCON(*(volatile unsigned long *)0x56000050)
#define GPFDAT(*(volatile unsigned long *)0x56000054)

#defineGPF4_OUT(1<<(2*4))
#define GPF5_OUT(1<<(2*5))
#define GPF6_OUT(1<<(2*6))

void Delay(volatile unsigned long dly)
{
for(;dly>0;dly--);
}

int main(void)
{
unsigned long i=0;

GPFCON=GPF4_OUT|GPF5_OUT|GPF6_OUT;

while(1)
{
Delay(20000);
GPFDAT=(~(i<<4));
if(++i==8)
i=0;
}

return 0;
}
nand.lds:
SECTIONS{
firtst0x00000000 : { head.o init.o nand.o }
second0x30000000 : AT(4096) { main.o }
}

Makefile:
objs := head.o init.o nand.o main.o

nand.bin : $(objs)
arm-linux-ld -Tnand.lds-o nand_elf $^
arm-linux-objcopy -O binary -S nand_elf $@
arm-linux-objdump -D -m armnand_elf > nand.dis

%.o:%.c
arm-linux-gcc -Wall -c -O2 -o $@ $<

%.o:%.S
arm-linux-gcc -Wall -c -O2 -o $@ $<

clean:
rm -fnand.dis nand.bin nand_elf *.o2017-11-17

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉