女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁 > 工業(yè)控制 > 工業(yè)控制
[導(dǎo)讀]摘要:為了達(dá)到提高光伏逆變器的容量和性能目的,采用并聯(lián)型注入變換技術(shù)。根據(jù)逆變器結(jié)構(gòu)以及光伏發(fā)電陣電流源輸出的特點,選用工頻隔離型光伏并網(wǎng)逆變器結(jié)構(gòu),并在仿真軟件PSCAD中搭建光伏電池和逆變器模型,最后通

摘要:為了達(dá)到提高光伏逆變器的容量和性能目的,采用并聯(lián)型注入變換技術(shù)。根據(jù)逆變器結(jié)構(gòu)以及光伏發(fā)電陣電流源輸出的特點,選用工頻隔離型光伏并網(wǎng)逆變器結(jié)構(gòu),并在仿真軟件PSCAD中搭建光伏電池和逆變器模型,最后通過仿真與實驗驗證了理論的正確性和控制策略的可行性。
關(guān)鍵詞:太陽能光伏發(fā)電系統(tǒng);太陽能電池組件;并網(wǎng)變換器;PSCAD

    近年來,應(yīng)用于可再生能源的并網(wǎng)變換技術(shù)在電力電子技術(shù)領(lǐng)域形成研究熱點。并網(wǎng)變換器在太陽能光伏、風(fēng)力發(fā)電等可再生能源分布式能源系統(tǒng)中具有廣闊發(fā)展前景。太陽能、風(fēng)能發(fā)電的重要應(yīng)用模式是并網(wǎng)發(fā)電,并網(wǎng)逆變技術(shù)是太陽能光伏并網(wǎng)發(fā)電的關(guān)鍵技術(shù)。在光伏并網(wǎng)發(fā)電系統(tǒng)中所用到的逆變器主要基于以下技術(shù)特點:具有寬的直流輸入范圍;具有最大功率跟蹤(MPPT)功能;并網(wǎng)逆變器輸出電流的相位、頻率與電網(wǎng)電壓同步,波形畸變小,滿足電網(wǎng)質(zhì)量要求;具有孤島檢測保護功能;逆變效率高達(dá)92%以上,可并機運行。逆變器的主電路拓?fù)渲苯記Q定其整體性能。因此,開發(fā)出簡潔、高效、高性價比的電路拓?fù)渲陵P(guān)重要。

1 逆變器原理
    該設(shè)計為大型光伏并網(wǎng)發(fā)電系統(tǒng),據(jù)文獻(xiàn)所述,一般選用工頻隔離型光伏并網(wǎng)逆變器結(jié)構(gòu),如圖1所示。光伏陣列輸出的直流電由逆變器逆變?yōu)榻涣麟?,?jīng)過變壓器升壓和隔離后并入電網(wǎng)。光伏并網(wǎng)發(fā)電系統(tǒng)的核心是逆變器,而電力電子器件是逆變器的基礎(chǔ),雖然電力電子器件的工藝水平已經(jīng)得到很大的發(fā)展,但是要生產(chǎn)能夠滿足盡量高頻、高壓和低EMI的大功率逆變器時仍有很大困難。所以對大容量逆變器拓?fù)溥M(jìn)行研究是一種具有代表性的解決方案。作為太陽能光伏陣列和交流電網(wǎng)系統(tǒng)之間的能量變換器,其安全性,可靠性,逆變效率,制造成本等因素對于光伏逆變器的發(fā)展有著舉足輕重的作用,決定著光伏發(fā)電系統(tǒng)的投資和收益。市場主流光伏變換器大都采用電壓源型變換器,因為光伏電池的電流源輸出特性,所以為滿足光伏電池的直流端電壓可能大幅度變化的特性,都采用二級變換的技術(shù)方案,這導(dǎo)致變換效率的降低。大功率電流源變換技術(shù)因為強迫斷流緩沖電容的高價,低可靠性,使電流源型變換器的應(yīng)用受到限制。注入式電流源型變換器的直流側(cè)電流電壓全控特性,使光伏電池發(fā)出的直流電僅經(jīng)一級變換就可以完成,這一的特性使電流源型變換器有可能成為高效的光伏變換技術(shù)方案。


1.1 兩電平逆變器
    傳統(tǒng)的逆變器通常也稱為兩電平變換器,并網(wǎng)逆變器一般使用橋式電路,這種拓?fù)浣Y(jié)構(gòu)比較簡單。太陽能光電池具有電流源型特性,光伏陣列串聯(lián)大電感后相當(dāng)于電流源,以這種方式并接入電網(wǎng),稱為電流源并網(wǎng)。為改善并網(wǎng)電流,在交流側(cè)需要加濾波電容器,光伏電池要串聯(lián)電感才能接在相應(yīng)的直流母線上。由于大電感的存在,使直流回路電流不易變化,在逆變器開關(guān)動作時,如果不能保證逆變器輸入電流穩(wěn)定,則易產(chǎn)生很高的di/dt,影響逆變器的安全運行。
1.2 多級注入式電流源型逆變器
    將諧波注入的概念用在功率變換器已經(jīng)有半個多世紀(jì)的歷史。但是將諧波注入用于功率變換器中作為減少諧波含量的一種方法。多級注入電流幅度與工作條件相匹配,通過附加晶閘管觸發(fā)控制和利用紋波電壓實現(xiàn)自然換相,注入電流的頻率和相位與供給電源取得同步。建立在直流電流和注入電流的固定幅值關(guān)系上,各種工作條件下的最優(yōu)的諧波抑制得到保證,交流電流波形和直流電壓波形質(zhì)量進(jìn)一步提高。在文獻(xiàn)中,提出了一種新的直流電流注入的概念,并且發(fā)現(xiàn)了6倍基頻的注入電流用在12脈沖電流源變換器能夠起到完全抑制諧波的效果。其中非常規(guī)系統(tǒng)的研究方法來尋找注入電流波形的幅值,從而達(dá)到最小諧波畸變率的目的。并且經(jīng)過嚴(yán)格的數(shù)學(xué)分析概括總結(jié)了這種思想,導(dǎo)出了能夠完全消除標(biāo)準(zhǔn)12脈波電流源變換器交流測輸出波形諧波的理想注入波形。12脈波電流源變換器,主電路的工作模式和普通三相全控橋式變換器相同,每個橋中的6個晶閘管間隔60°依序觸發(fā)導(dǎo)通,每個主橋開關(guān)導(dǎo)通120°。這樣,對兩個并聯(lián)的三相全控橋而言,每隔30°觸發(fā)一支橋臂上的開關(guān),任意時刻都有兩只開關(guān)導(dǎo)通。它不需要交流系統(tǒng)提供換相電壓,與交流系統(tǒng)同步連接可以作為整流器運行也可作為逆變器運行。當(dāng)有功功率從交流系統(tǒng)向直流系統(tǒng)輸送時,該裝置工作在整流狀態(tài),當(dāng)有功功率從直流系統(tǒng)向交流系統(tǒng)輸送時,此裝置工作在逆變狀態(tài)。多級注入式電流源型逆變器(MLCR—CSC)的直流電壓可正可負(fù),變換器需要采用具有對稱特性的開關(guān)器件,即具有雙向電壓阻斷能力和單向電流流通能力的器件。所以IGBT不可以直接用于MLCR—CSC,二極管與IGBT串聯(lián)可以滿足這種性能要求,但是器件串聯(lián)又會引起額外的功率損耗。由于MLCR—CSC的相對較低的開關(guān)頻率,晶閘管適用于大功率的MLCR—CSC。由于直流側(cè)電感的存在,使得直流電流單向流動,而直流電壓極性可能瞬時改變,所以多級注入式電流源變換器需要的開關(guān)器件應(yīng)具有雙向電壓阻斷能力和單向電流流通能力。

2 實驗仿真
2.1 太陽能電池模型搭建
    根據(jù)文獻(xiàn)原理光伏電池的等效電路見圖2。在此基礎(chǔ)上搭建輸出0~450 V的直流電源在PSCAD中,模型如圖2所示。該仿真模型選取的是典型光伏參數(shù),組件選用型號為YL85(17)1010×660,主要參數(shù)為:輸出峰值功率85 W、峰值電壓17.5 V、峰值電流4.9 A、開路電壓22 V、短路電流5.3 A。要求光伏陣列輸出5 000 W,可推算光伏組件連接方式為20串3并。


    由圖3的光伏陣列的仿真模型,得出I-U特性曲線和P-U特性曲線如4所示。


    通過計算得出的最大功率為5.1 kW,與模型輸出的功率基本吻合,輸入量的其他參數(shù)也基本吻合,故可以在工程實踐中使用。
2.2 逆變器拓?fù)潆娐?br />     在該拓?fù)浣Y(jié)構(gòu)(見圖5)中主控橋采用由兩組并聯(lián)的三相全橋串聯(lián)組成一個12脈波電流源變換器。主橋由24個換流閥組成,每一個開關(guān)閥由一個晶閘管組成。其交流側(cè)通過變壓器串聯(lián)而成。變壓器分別采用Y/Y和Y/△連接,變比分別為Kn:1和Kn:。構(gòu)成與Y/△相連的6脈波變換器的觸發(fā)脈沖整體滯后于與Y/Y相連的6脈沖變換器30°,使得兩變換器的輸出在變壓器一次側(cè)各相電壓同相。圖中的注入電路是由晶閘管與二極管的串聯(lián)或反串聯(lián)構(gòu)成,與上橋所接的開關(guān)是晶閘管與二極管反串,下橋則相反,通過對晶閘管發(fā)出不同觸發(fā)脈沖來實現(xiàn)逆變器的四象限運行,同樣使上橋注入理想電流波形,使波形輸出理想。


    圖6下主橋注入電流波形上部與下部對應(yīng)三相橋輸出直流電流大小相等,相位差為15°,電感支路電流為疊加少量紋波的直流,各支路電流平均值為IDC/6。交流電壓、電流波形見圖7。多電平電流波形的正弦度較好,電壓波形有明顯的毛刺,這是由開關(guān)切換時電感能量轉(zhuǎn)移引起的,各開關(guān)器件引入阻容吸收回路后,可使電壓毛刺明顯減少。


    圖8中,CH1是A相電壓波形;CH2是B相電壓波形;CH3是C相電壓波形。結(jié)論是三相電壓正弦波形上疊加一些毛刺,與仿真相吻合。



3 實驗結(jié)論
    各注入支路電力電子開關(guān)最佳組合控制方案的確定。多個注入支路具有多種開關(guān)組合方案,如何以較低復(fù)雜程度的開關(guān)組合方案實現(xiàn)變換要求,是研究的主要技術(shù)難點之一。在仿真中,使用PSCAD做了6級電流注入的研究,證明了該系統(tǒng)無需加設(shè)濾波器以及采用PWM技術(shù),就能得到理想的輸出波形。正是由于該裝置具有非常低的諧波畸變率以及低的開關(guān)損耗,因此該裝置很適合應(yīng)用于大功率的應(yīng)用場合。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉