女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當前位置:首頁 > 汽車電子 > 汽車電子
[導讀]WSN(Wireless Sensors Network)是集傳感器技術(shù)、MEMS技術(shù)和網(wǎng)絡(luò)技術(shù)于一體的一種信息獲取和信息處理技術(shù)[1],它具有自組織、自適應(yīng)能力,在智能交通方面具有獨特的優(yōu)點和廣闊的應(yīng)用前景[2]。在智能公交系統(tǒng)中,車輛位

WSN(Wireless Sensors Network)是集傳感器技術(shù)、MEMS技術(shù)和網(wǎng)絡(luò)技術(shù)于一體的一種信息獲取和信息處理技術(shù)[1],它具有自組織、自適應(yīng)能力,在智能交通方面具有獨特的優(yōu)點和廣闊的應(yīng)用前景[2]。

在智能公交系統(tǒng)中,車輛位置的準確求取和傳遞是其他系統(tǒng)功能實現(xiàn)的先決條件。當前已經(jīng)有了一些利用無線傳感器搭建智能公交系統(tǒng)的通信網(wǎng)絡(luò)的方案[4-6],但這些方案均利用其他手段實現(xiàn)車輛的定位,鮮有利用無線傳感器自身的TOF測距功能實現(xiàn)車輛定位功能。而利用基于TOF的無線傳感器實現(xiàn)公交車載節(jié)點的定位可以降低系統(tǒng)建設(shè)和實用成本,對公交系統(tǒng)智能化改造具有參考意義。

在無線傳感器定位算法中,由于Range-free定位算法要求大密度的參考節(jié)點,所以不適合智能公交系統(tǒng)車輛定位。而通常基于TOA、TDOA以及AOA的定位技術(shù)需要添加額外的硬件,導致系統(tǒng)的定位成本增加。基于RSSI測距的方法雖然易于實現(xiàn),但由于其有效定位距離近,遠距離情況下定位精度較低,因此很難單獨應(yīng)用。近年來,英國Jennic公司最新推出了采用TOF(Time Of Flight)測距技術(shù)的ZigBee芯片JN5148,能夠有效地提高無線傳感器測距精度。本文即以此為背景對公交車載節(jié)點的定位算法和策略進行了深入研究。

1 基于TOF/RSSI定位算法分析研究

為了充分發(fā)揮JN5148的測距能力,本文對其進行了測距實驗,并對其在車載節(jié)點定位上的應(yīng)用方法進行了研究和討論。

1.1 TOF測距效果實驗分析

JN5148通過測定無線信號在兩節(jié)點間雙向傳遞時間計算節(jié)點間距離[5-6],同時其數(shù)據(jù)幀中包含RSSI參數(shù)。JN5148芯片在戶外的測距實驗曲線如圖1所示,圖1(a)是在300 m范圍內(nèi)每10 m進行一次測量的測距誤差圖;圖1(b)是10 m范圍內(nèi)每0.2 m進行一次測量的測距誤差圖。

 

 

1.3 車載節(jié)點定位方案分析

為了提高車載節(jié)點定位精度,考慮了以下幾種改進方案:

(1)縮短固定參考節(jié)點間距離

通過增加固定節(jié)點的數(shù)量,以縮短相鄰固定節(jié)點間的平均距離、優(yōu)化幾何構(gòu)型。如可將圖2(a)中固定節(jié)點A、B間距離縮短到100 m。

(2)引入高度因素構(gòu)建三維定位

通過調(diào)整固定參考節(jié)點高度(如:將固定節(jié)點C安裝在附近高樓上),構(gòu)建立體三維定位,以改善固定參考節(jié)點與待測節(jié)點的幾何構(gòu)型。

(3)采用線性定位思路

根據(jù)實際道路特點,忽略道路寬度,采用線性定位法,僅考慮車載節(jié)點在道路上的一維位置。

綜合考慮以上三種改進方法,第一種方案的系統(tǒng)造價高,構(gòu)建的網(wǎng)絡(luò)復(fù)雜;第二種方案受道路環(huán)境影響較大,操作困難:第三種方案可將無線傳感器固定在路中間(如信號燈上、道路指引牌上等),通過無線傳感器測距,直接估算車輛的位置,對WSN節(jié)點的要求低,較為可行。

2 車載節(jié)點組合定位思路研究

在公交車線性定位過程中,可利用里程儀信息,里程儀的測距誤差一般在1%左右[8]。若公交車受復(fù)雜路況等因素影響,僅用里程儀定位將產(chǎn)生較大誤差。如圖3所示的城市道路示意圖中,僅由道路轉(zhuǎn)盤(綠島)產(chǎn)生的差異就會使公交車往返路程差超過30 m。為了提高車輛定位的魯棒性和精度,本文提出了使用里程儀與無線傳感器的TOF/RSSI測距相結(jié)合進行車載節(jié)點組合定位的方法。

 

 

根據(jù)無線傳感器的TOF/RSSI以及車輛里程儀的測距特點,定位算法的主要思想如下:車載節(jié)點在離固定節(jié)點較近時采用RSSI測距定位,同時計算里程儀誤差修正參數(shù);車輛節(jié)點距離固定節(jié)點較遠時,采用由TOF測距定位修正的里程儀進行定位的組合定位思路。詳細的定位算法流程如圖4所示。

 

 

車載節(jié)點將RSSI值與設(shè)定閾值比較,當RSSI值大于閾值時,說明節(jié)點即將到達或剛開始遠離某固定節(jié)點;然后判斷RSSI值的變化趨勢,RSSI值減小則說明節(jié)點在前一個數(shù)據(jù)采集時刻車輛與固定節(jié)點位置最近,此時利用RSSI值進行測距定位,并使用RSSI測距值和里程儀測距值估計里程儀偏差值。利用無線傳感器RSSI估計里程儀的偏差值算法流程如圖5(a)所示。

 

 

當公交車輛繼續(xù)遠離固定節(jié)點時,所采集的RSSI值小于閾值,開始進入基于里程儀和TOF組合定位模式。利用TOF修正里程儀偏差的算法如圖5(b)所示,其中,dODM為里程儀測距值,dTOF為TOF測距值,?啄TOF為TOF測距誤差。利用車載節(jié)點存儲多個TOF測距值,與相應(yīng)里程儀測距值相減,可得到一組差值序列。該歷史差值序列可以用于求解里程儀偏差和刻度系數(shù)誤差,對里程儀誤差進行實時補償。

一般來說,當里程儀測距值與TOF測距值的差值大于兩倍的TOF測距誤差時,說明里程儀定位誤差較大,需要進行修正。通過差值序列獲取方式的不同,還可以將該補償算法分為靜態(tài)TOF校正法(利用某固定時段的差值序列)和動態(tài)TOF校正法(利用實時更新的差值序列)。

3 組合定位算法的驗證

為了驗證上述組合算法的有效性,利用MATLAB對上述算法進行了仿真。TOF及RSSI的測距誤差按式(1)、式(2)的誤差模型進行設(shè)置;里程儀的刻度系數(shù)誤差設(shè)為1%,里程儀的初始偏差設(shè)為16 m。

圖6(a)為模擬車載節(jié)點離開固定節(jié)點時利用RSSI修正里程儀誤差結(jié)果。從圖中可以看出,利用RSSI估計并修正里程儀測距誤差的效果十分明顯。

將TOF測距值與對應(yīng)里程儀測距值的差值序列進行一階線性擬合,可求解刻度系數(shù)誤差和里程儀偏差,并對里程儀數(shù)據(jù)進行修正。仿真中靜態(tài)校正法采用0 m~200 m的差值序列進行里程儀誤差的補償,結(jié)果如圖6(b)所示。動態(tài)校正法實時使用修正點前,200 m的差值序列進行里程儀誤差的補償,結(jié)果如圖6(c)所示。兩種算法結(jié)果都表明:TOF校正后的里程儀測距精度遠高于TOF和里程儀自身的測距精度。

表1中匯集了其中5次的仿真結(jié)果。其中,組合算法1包含了RSSI校正和靜態(tài)TOF校正,組合算法2包含了RSSI校正和動態(tài)TOF校正。

 

 

由表1可知,基于TOF/RSSI的公交車載節(jié)點組合定位算法定位效果優(yōu)于三種獨立的測距定位方法,定位標準差小于5 m(與GPS定位精度相當)。組合算法1定位標準差優(yōu)于組合算法2;組合算法2的魯棒性要強于組合算法1,但其計算量較大。兩種組合算法均在一定程度上改善了TOF測距誤差波動大、RSSI遠程測距誤差大、里程儀測距在車輛非直線行駛時定位誤差大的缺點。

本文對基于無線傳感器網(wǎng)絡(luò)的車載節(jié)點定位方法進行了研究,測試分析了新型的TOF無線傳感器芯片JN5148的測距效果,研究了固定節(jié)點分布對車輛定位的影響,提出了基于TOF/RSSI及車輛里程儀的組合車輛定位算法,并討論了靜態(tài)和動態(tài)兩種TOF誤差修正模式。仿真結(jié)果表明,組合定位算法精度能夠滿足實際應(yīng)用要求,結(jié)合無線傳感器網(wǎng)絡(luò)本身的良好通信能力,有助于經(jīng)濟地實現(xiàn)公交系統(tǒng)智能化改造,具有較好的應(yīng)用參考價值。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉