女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當前位置:首頁 > 汽車電子 > 汽車電子
[導讀] 摘 要:為解決基于背景差分的車輛檢測辦法易受交通狀況影響的問題,首先建立基于區(qū)間分布的自適應(yīng)背景模型,然后利用改進的背景更新算法對建立的背景模型選擇性更新。實驗結(jié)果表明,該算法在交通堵塞或臨時停車等

 摘  要:為解決基于背景差分的車輛檢測辦法易受交通狀況影響的問題,首先建立基于區(qū)間分布的自適應(yīng)背景模型,然后利用改進的背景更新算法對建立的背景模型選擇性更新。實驗結(jié)果表明,該算法在交通堵塞或臨時停車等復雜交通環(huán)境中有很好的背景提取和更新效果。與經(jīng)典的算法相比,該車輛檢測算法在實時性和準確性方面都有所提高。

  隨著智能交通技術(shù)的發(fā)展,智能交通系統(tǒng)中交通檢測已經(jīng)成為計算機視覺技術(shù)應(yīng)用的一項重要課題。序列圖像中車輛檢測與跟蹤在智能交通領(lǐng)域中起著關(guān)鍵作用。車輛檢測常用的方法有基于幀間的差分辦法、光流法和基于背景的差分辦法?;诒尘暗牟罘洲k法能解決基于幀間差分辦法和光流法中的問題,并且計算簡單,但是背景容易受到交通環(huán)境和光強度的影響,理想的背景不容易獲得,所以,自適應(yīng)環(huán)境變化的背景模型對運動車輛檢測的精確性起著非常重要的作用。

  1 算法描述

  算法(Algorithm)是一系列解決問題的清晰指令,算法代表著用系統(tǒng)的方法描述解決問題的策略機制。也就是說,能夠?qū)σ欢ㄒ?guī)范的輸入,在有限時間內(nèi)獲得所要求的輸出。如果一個算法有缺陷,或不適合于某個問題,執(zhí)行這個算法將不會解決這個問題。不同的算法可能用不同的時間、空間或效率來完成同樣的任務(wù)。一個算法的優(yōu)劣可以用空間復雜度與時間復雜度來衡量。

  智能交通系統(tǒng)是目前世界和各國交通運輸領(lǐng)域競先研究和開發(fā)的熱點,基于背景差分的辦法是從視頻流中檢測運動物體常用的方法,是目前研究的重點。由于受到交通狀況、天氣和光強度等因素的影響,不容易獲得理想的背景,尤其在交通堵塞、車輛行動緩慢或者臨時停車等情況下,背景更新率低。

  圖1為車輛檢測流程圖。首先,建立基于區(qū)間分布的快速自適應(yīng)背景模型,然后利用改進的基于ε-δ的背景更新算法對建立的背景模型進行選擇性更新,結(jié)合閾值分割和形態(tài)學操作實現(xiàn)運動車輛的提取。實驗結(jié)果表明,本文提出的算法對于復雜交通環(huán)境(交通堵塞、車流量非常大、車流緩慢、交通堵塞或臨時停車等情況)有很好的背景提取和更新效果,與經(jīng)典的算法相比,在實時性和準確性方面都有所提高。

  2 自適應(yīng)背景模型

  為了解決車輛檢測精確度問題,國內(nèi)外學者在背景建模方面做了大量的研究。參考文獻[4]利用視頻圖像中最近N幀的像素點的平均值的作為背景模型,這種方法在多個運動目標或者運動目標行動緩慢時,對于頻繁變化的像素,需要多個高斯混合分布才能反映背景像素的變化。這些方法要求在背景模型的建立過程中沒有運動車輛并且建立背景模型的時間較長,不能滿足實際應(yīng)用的需要。本文提出簡單有效的背景模型和更新的方法。

  2.1 背景模型的建立

  在視頻圖像序列中,可以統(tǒng)計出每個坐標點像素值的分布,并設(shè)定出現(xiàn)頻率高的像素值作為背景模型中對應(yīng)點的像素值。但是這種方法計算量比較大,并且對光線和背景的逐漸改變適應(yīng)性差。


  在定義了ui(x,y)和Ci(x,y)后,建立背景模型的細節(jié)步驟如下:

 ?。?)確定當前像素屬于哪個區(qū)間,設(shè)定為i。

 ?。?)計算ui(x,y)和Ci(x,y)。

 ?。?)根據(jù)Ci(x,y)把區(qū)間從小到大分類。

  (4)設(shè)定Ci(x,y)最大的區(qū)間的ui(x,y)作為背景模型Mt中對應(yīng)點的像素值。

 ?。?)對視頻流各幀所有像素點重復步驟(1)~(4)。

2.2  背景模型更新

  經(jīng)過上述幾個步驟,得到能自適應(yīng)光強度變化的背景模型。但在車輛擁擠、臨時停車或者車輛運動緩慢的情況下,背景模型容易出錯,導致車輛檢測準確性降低。為了在復雜交通狀況下也能得到理想的背景模型,論文在傳統(tǒng)σ-δ背景更新方法基礎(chǔ)上提出了一個是否更新背景模型的判斷尺度。


 

  3 運動目標提取

  在獲得重建的背景之后,可以根據(jù)當前圖像和背景圖像的差值求得運動目標。背景差圖像為D(x,y)=I(x,y)-B(x,y)。圖像中所有低于這一閾值的像素集將被定義為背景, 而高于這一閾值的像素集定義為運動目標。采用歸一化的方法,即低于閾值的賦0值, 高于閾值的賦1值。不論以何種方式選取閾值, 取單閾值分割后的圖像可定義為:

  閾值分割法是一種基于區(qū)域的圖像分割技術(shù),其基本原理是:通過設(shè)定不同的特征閾值,把圖像象素點分為若干類。常用的特征包括:直接來自原始圖像的灰度或彩色特征;由原始灰度或彩色值變換得到的特征。設(shè)原始圖像為f(x,y),按照一定的準則f(x,y)中找到特征值T,將圖像分割為兩個部分,分割后的圖像為:若?。篵0=0(黑),b1=1(白),即為我們通常所說的圖像二值化。

  本文選取基于最大方差理論的大津法作為視頻車輛檢測中閾值分割的處理算法。取閾值將物體從背景中分離出來,實際上就是將圖像中的所有像素分為2組,或?qū)儆谖矬w像素,或?qū)儆诒尘跋袼亍S筛怕收撝械睦碚摰弥?,若使待分割?組數(shù)據(jù)方差最大,則得到2組數(shù)據(jù)的錯分概率最小。

  經(jīng)過閾值分割已經(jīng)能夠成功地分割出運動車輛。大津法分割得到的二值圖像仍然在車輛內(nèi)部存在黑色像素點的問題。為了使檢測到的運動目標完整而連續(xù),對背景幀差法得到的二值圖像進行形態(tài)學膨脹與腐蝕。實驗證明,經(jīng)過三次膨脹與腐蝕之后的圖像,可以基本填補運動目標的空洞。

  4 實驗結(jié)果

  本文以智能交通中車輛自動監(jiān)視系統(tǒng)為應(yīng)用背景,通過實驗證明提出方法的正確性。使用固定在三腳架上的攝像機在室外攝取不同場景的視頻進行實驗。實驗平臺為PC機Matlab7.0仿真。

  圖3為自適應(yīng)背景模型的提取。選取特殊的臨時停車情況,本文提出的算法能夠自適應(yīng)提取出背景模型。本文提出的算法在第621幀時能夠得到理想的背景模型,如圖3所示;而利用高斯分布提取背景模型的方法則在1 460幀時才能獲得如圖所示的理想的背景模型。所以該算法比傳統(tǒng)的算法在計算速度上有所提高,能夠?qū)崟r性地檢測出運動車輛。

  圖4為一段城市交通視頻,圖5為城市交通視頻中臨時停車情況,其中左下角為原始視頻,右下角為本文算法提取的背景模型,左上角為檢測出的運動物體,右上角為標定檢測出的運動車輛。圖4分別取了城市交通視頻的第59幀和第114幀,圖5選取了第618幀和第673幀,可以看出在繁忙的城市交通中,本文提出的算法能夠準確地檢測出運動車輛。

  從圖4中可以看出在城市交通場景中運動車輛能夠?qū)崟r地提取出理想的背景模型。通過背景差分辦法并結(jié)合閾值分割和形態(tài)學操作,精確地得到了運動區(qū)域。

  從圖5可以看到臨時停車時,能夠準確提取出背景模型。當車輛經(jīng)過短暫的停車又并入車流時,背景中這個車輛慢慢變得模糊,而且在運動目標提取時提取了該車輛。說明該算法能夠在提高計算速度的同時保證檢測精確度。

  本文以背景模型的建立和選擇性更新為基礎(chǔ)實現(xiàn)車輛檢測。為了適應(yīng)快速改變的交通環(huán)境,本文提出一個自適應(yīng)的背景模型算法。在建立自適應(yīng)背景模型后,利用灰度圖像與背景模型差分實現(xiàn)運動目標提取。仿真實驗證明,提出的算法在像素水平上建立自適應(yīng)光強度等環(huán)境變化背景模型,同時估計交通流量的大小,通過對交通流量的估計判斷是否更新背景模型。本文提出的算法對于復雜交通環(huán)境(交通堵塞,車流量非常大,車流緩慢,交通堵塞或臨時停車等情況)有很好的背景提取和更新效果,并且能實時精確地提取出運動車輛的完整信息。

 

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉