女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當前位置:首頁 > 模擬 > 模擬
[導讀]為了提高儀器儀表系統(tǒng)的精度,數模轉換器的性能已經突破16位,而以前必須采用笨重、昂貴、慢速的Kelvin-Varley分壓器才能達到這一性能水平。 然而,隨著時間的推移,市場和技術不斷發(fā)展,關于精密數模轉換器的定義

為了提高儀器儀表系統(tǒng)的精度,數模轉換器的性能已經突破16位,而以前必須采用笨重、昂貴、慢速的Kelvin-Varley分壓器才能達到這一性能水平。

然而,隨著時間的推移,市場和技術不斷發(fā)展,關于精密數模轉換器的定義也已發(fā)生變化。半導體處理技術、DAC設計和校準技術的發(fā)展使高線性度數模轉換器成為可能。這種轉換器不僅穩(wěn)定性好、建立時間短,而且能提供優(yōu)于1ppm的20位性能。這類小型IC保證性能規(guī)格,無需校準且簡單易用。

1ppm DAC的應用范圍覆蓋從醫(yī)療MRI系統(tǒng)中的梯度線圈控制到質譜測定、測試和測量應用中的精密源和定位。

性能指標

圖1所示電路提供1ppm性能,其關鍵技術指標是積分非線性度、微分非線性度和0.1Hz至10Hz峰峰值噪聲。



圖1中,U1是一個具有1ppm線性度指標的20位DAC。U2是一個精密雙通道放大器,用作DAC基準電壓輸入的驅動-檢測緩沖器。U3是一個精密輸出緩沖器,用于驅動負載,其關鍵要求與基準電壓緩沖器相似,其中包括低噪聲、低失調電壓、低漂移和低輸入偏置電流。

雖然有1ppm以下的精密元件可供使用,但構建1ppm系統(tǒng)并非易事,不可等閑視之。1ppm精度電路中的主要誤差源為噪聲、溫度漂移和熱電電壓。

*噪聲

為實現真正的1ppm系統(tǒng),必須將噪聲降至最低水平。U1的噪聲頻譜密度為7.5 nV/vHz。U2和U3的額定噪聲密度為2.8 nV/vHz,遠遠低于DAC的噪聲貢獻。

寬帶噪聲可以通過濾波消除,但0.1Hz至10Hz范圍內的低頻噪聲(1/f)卻無法濾除。要盡量降低這一噪聲,最有效的方法在于器件優(yōu)化和選擇。U1在0.1Hz至10Hz帶寬下產生0.6μVp-p噪聲,遠低于1LSB(對于±10V輸出,1LSB = 19μV)。系統(tǒng)中1/f噪聲的設計目標值應為0.1LSB或2µV左右。信號鏈中的三個放大器在電路輸出端總共產生大約0.2μVp-p的噪聲。加上U1的0.6μVp-p噪聲,預計總1/f噪聲為0.8μVp-p。

*溫度漂移

溫度漂移是精密電路中的另一個主要誤差源。U1的溫度系數為0.05ppm/°C。U2的漂移系數為0.6µV/°C,即總體會向電路中引入0.03ppm/°C的漂移。同時U3再貢獻0.03ppm/°C的輸出漂移,這樣三者相加后為0.11 ppm/°C。對于調節(jié)和增益電路,建議使用低漂移、熱匹配電阻網絡,如Vishay的300144Z和300145Z。

*熱電電壓

熱電電壓是塞貝克(Seebeck)效應的結果:異質金屬結面處會產生與溫度相關的電壓。所產生的電壓在0.2µV/°C(銅-銅結面)至1mV/°C(銅-銅氧化物結面)之間。

熱電電壓表現為與1/f噪聲相似的低頻漂移。使所有連接保持整潔,消除氧化物,并且屏蔽電路使其不受氣流影響,可以大幅降低熱電電壓。圖4顯示了開放式電路與屏蔽式電路在電壓漂移上的差異。

長期穩(wěn)定性

精密模擬IC雖然很穩(wěn)定,但確實會發(fā)生長期老化變化。DAC的長期穩(wěn)定性一般好于0.1ppm/1000小時,但老化不具累積性質,而是遵循平方根規(guī)則。若某個器件的老化速度為1ppm/1000小時,則2000小時老化√2ppm,3000小時老化√3ppm,依此類推。一般地,溫度每降低25°C,時間就會延長10倍;因此,當工作溫度為100°C時,在10000小時的期間(約60星期),預計老化為0.1ppm。以此類推,在10年期間,預計老化為0.32ppm。

電路構建和布局

在注重精度的電路中,精心考慮電源和接地回路布局有助于確保達到額定性能。在設計PCB時,應采用模擬部分與數字部分相分離的設計,并限制在電路板的不同區(qū)域內。

必須采用足夠大(10µF)的電源旁路電容,與每個電源上的0.1µF電容并聯,并且盡可能靠近封裝。這些電容應具有低等效串聯電阻和低等效串聯電感。各電源線路上若串聯一個鐵氧體磁珠,則可進一步降低通過器件的高頻噪聲。

電源線路應采用盡可能寬的走線,以提供低阻抗路徑,并減小電源線路上的毛刺噪聲影響。時鐘等快速開關信號應利用數字地屏蔽起來,以免向電路板上的其它器件輻射噪聲,并且絕不應靠近基準輸入或位于封裝之下。避免數字信號與模擬信號交叉,且它們在電路板相反兩側上的走線應彼此垂直,以減小電路板的饋通影響。

圖2



構建1ppm模數轉換解決方案

一種典型的現代1ppm模數轉換解決方案由兩個16位數模轉換器構成——一個主DAC和一個輔助DAC。其輸出經縮放和組合后產生更高的分辨率。主DAC輸出與經衰減的輔助DAC輸出相加,使輔助DAC填補主DAC LSB步長之間的分辨率間隙。

組合后的輸出需要具備單調性,但線性度無需極高,因為高性能是通過精密模數轉換器的恒定電壓反饋取得的,該轉換器會校正固有的元件誤差。因此,電路精度受ADC的限制而不受限于DAC。然而,由于要求恒定電壓反饋以及不可避免的環(huán)路延遲,這種解決方案速度較慢,建立時間可能長達數秒。

盡管這種電路能夠取得1ppm的精度,但設計難度較大,很可能需要重復設計多次,而且需要通過軟件引擎和精密ADC來實現目標精度。為了保證1ppm的精度,ADC還需進行校準,因為目前市場上還沒有保證1ppm線性度的ADC。此處所示框圖只是概念的展示,真實的電路要復雜得多,涉及多個增益、衰減和求和級,并包括許多元件。

同時還需要數字電路,以方便DAC與ADC之間的接口,更不用說用于誤差校正的軟件了。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉