女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀]建立了一種RBF神經(jīng)網(wǎng)絡(luò)的自適應(yīng)學(xué)習(xí)模型。該模型事先不需要確定隱層節(jié)點的中心位置和數(shù)量,而是在學(xué)習(xí)過程中,根據(jù)相應(yīng)的添加策略和刪除策略,自適應(yīng)地增加或減少隱層節(jié)點的數(shù)量。最終形成的網(wǎng)絡(luò)不僅結(jié)構(gòu)簡單,精度高,而且具有較好的泛化能力。

引言
    徑向基函數(shù)(Radial Basis Function,RBF)神經(jīng)網(wǎng)絡(luò)具有結(jié)構(gòu)簡單,學(xué)習(xí)速度快等優(yōu)點,在函數(shù)逼近、系統(tǒng)辨識、模式識別等領(lǐng)域得到了廣泛應(yīng)用。
    構(gòu)造RBF網(wǎng)絡(luò)的關(guān)鍵是合理選取徑向基函數(shù)的數(shù)量和中心向量。目前,比較常用的方法主要有K均值聚類法、C-Means算法等。這些方法都是在人為確定徑向基函數(shù)的數(shù)量和初始向量之后,采用基于歐氏距離的最近鄰方法來實現(xiàn)聚類的。對于類間距離大,類內(nèi)距離小的樣本可以得到比較不錯的結(jié)果,而對于類間交錯較大,類內(nèi)距離大的情形,這種方法的分類能力將嚴(yán)重減弱,從而不利于網(wǎng)絡(luò)的泛化應(yīng)用。另外,網(wǎng)絡(luò)的訓(xùn)練過程和工作過程完全獨立,如果外部環(huán)境發(fā)生變化,系統(tǒng)的特性會隨之發(fā)生變化,由此需要重新對網(wǎng)絡(luò)進(jìn)行訓(xùn)練,這使問題變得更加復(fù)雜,也使網(wǎng)絡(luò)的應(yīng)用領(lǐng)域受到限制。
    針對以上算法存在的問題,本文提出了一種RBF網(wǎng)絡(luò)的自適應(yīng)學(xué)習(xí)算法。該算法事先不需要確定RBF的數(shù)量和中心向量,而是在學(xué)習(xí)過程中,根據(jù)誤差在輸入空間的分布,自適應(yīng)地增加RBF的數(shù)量,并適當(dāng)調(diào)節(jié)中心向量。為了不使RBF的數(shù)量過于膨脹,還制定了相應(yīng)的刪除策略,該策略通過綜合評價每個RBF對網(wǎng)絡(luò)所作的貢獻(xiàn),然后刪除貢獻(xiàn)小的RBF,使網(wǎng)絡(luò)結(jié)構(gòu)始終保持簡潔。

1 RBF神經(jīng)網(wǎng)絡(luò)
    RBF網(wǎng)絡(luò)是一種三層前饋網(wǎng)絡(luò),由輸入層、輸出層和隱層組成。其中,輸入層和輸出層皆由線性神經(jīng)元組成;隱層的激活函數(shù)(核函數(shù))采用中心徑向?qū)ΨQ衰減的非負(fù)非線性函數(shù),其作用是對輸入信號在局部產(chǎn)生響應(yīng)。輸入層與隱層之間的權(quán)值固定為1,只有隱層與輸出層之間的權(quán)值可調(diào)。
    設(shè)輸入矢量x=(x1,x2,…,xn)T,隱層節(jié)點個數(shù)為m,RBF網(wǎng)絡(luò)的輸出可表示為:
   
    式中:ωi是第i個隱層節(jié)點與輸出層之間的權(quán)值;φi(‖x—ci‖),i=1,2,…,m為隱層激活函數(shù)。通常采用如下高斯函數(shù):
   
    式中:σi和ci分別表示該隱層節(jié)點的寬度和中心矢量;‖·‖是歐氏范數(shù)。

2 RBF網(wǎng)絡(luò)自適應(yīng)學(xué)習(xí)算法
    RBF選取得越多,網(wǎng)絡(luò)的逼近精度越高,但同時也會使網(wǎng)絡(luò)的泛化能力下降,因此,在滿足一定逼近精度的條件下,應(yīng)選取盡可能少的中心向量,以保證網(wǎng)絡(luò)有較好的泛化能力。本文提出的算法,根據(jù)網(wǎng)絡(luò)的輸出誤差在輸入空間的非均勻分布,以及每個RBF對網(wǎng)絡(luò)所作貢獻(xiàn)的大小,通過相應(yīng)的添加和刪除策略對網(wǎng)絡(luò)參數(shù)進(jìn)行自適應(yīng)調(diào)整,使網(wǎng)絡(luò)的逼近性能和泛化能力都達(dá)到較高的要求。同時,網(wǎng)絡(luò)的訓(xùn)練和工作可以交替進(jìn)行,所以它能夠適應(yīng)外界環(huán)境的緩慢變化。
2.1 添加策略
   
添加策略綜合考慮了網(wǎng)絡(luò)輸出誤差在輸入空間的非均勻分布。需要統(tǒng)計每個輸入矢量產(chǎn)生的輸出誤差,然后通過比較找出誤差相對較大的點,再在這些點附近適當(dāng)?shù)夭迦腚[層節(jié)點。
    設(shè)(xk,yk),k=1,2,…,N是一組訓(xùn)練樣本,初始時刻,隱層節(jié)點數(shù)為零,每次執(zhí)行添加操作,依據(jù)以下準(zhǔn)則判斷是否添加隱層節(jié)點:
   
    式中:是網(wǎng)絡(luò)輸出均方誤差;ck,nearest和xk,nearest分別對應(yīng)與輸入向量xk最接近的隱層節(jié)點中心和輸入向量。如果滿足添加條件,則將(xk+xk,nearest)/2設(shè)為新的隱層節(jié)點中心,將ek設(shè)為新節(jié)點的權(quán)值,中心寬度取。
2.2 刪除策略
   
由于RBF神經(jīng)網(wǎng)絡(luò)是一種局部感知場網(wǎng)絡(luò),網(wǎng)絡(luò)總的輸出取決于隱層與輸出層之間的權(quán)值和隱層節(jié)點中心與輸入矢量之間的距離。進(jìn)行訓(xùn)練時,所選取的訓(xùn)練樣本相對比較稀疏。當(dāng)某一個隱層節(jié)點中心離每一個輸入矢量都很遠(yuǎn)時,即使其權(quán)值是一個較大的數(shù),也不會對輸出產(chǎn)生太大的影響。在訓(xùn)練結(jié)束后進(jìn)行檢驗的過程中,檢驗的數(shù)據(jù)一般都比較密集,若某些輸入矢量離該隱層中心較近,則輸出會受到很大的影響,這使網(wǎng)絡(luò)的泛化能力變差。因此需要制定一種策略來刪除這樣的隱層節(jié)點,由此引入了刪除策略。
    刪除策略是針對每個隱層節(jié)點對整個網(wǎng)絡(luò)所作貢獻(xiàn)的大小不同而提出的。貢獻(xiàn)大的節(jié)點,繼續(xù)保留;貢獻(xiàn)小的節(jié)點,則刪除。對任意隱層節(jié)點i,用Ai來表示它對整個網(wǎng)絡(luò)所作的貢獻(xiàn)。Ai定義為:
   
    執(zhí)行刪除操作前,先對Ai進(jìn)行歸一化處理,即。最后的判斷規(guī)則為:若,則刪除第i個隱層節(jié)點,其中θ為判決門限。
    在采用梯度下降法調(diào)整隱層節(jié)點中心位置和權(quán)值的過程中,需要計算每個輸入矢量對應(yīng)的輸出誤差ek,以及每個隱層節(jié)點的輸出值φ(‖xk-ci‖)。而執(zhí)行添加和刪除操作時也需要計算ek和φ(‖xk-ci‖)。為了減小計算量,提高運(yùn)算效率,可以在調(diào)整隱層的中心位置和權(quán)值的過程中先保存ek和φ(‖xk-ci‖)的值。
2.3 算法流程
   
自適應(yīng)RBF神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)算法的具體流程如圖1所示。對RBF進(jìn)行訓(xùn)練之前,先確定最大訓(xùn)練次數(shù)M和訓(xùn)練允許誤差Er,作為訓(xùn)練結(jié)束的條件。


    整個算法的流程大體可分成三個部分。第一個部分是調(diào)節(jié)隱層節(jié)點的中心位置和隱層與輸出層之間的權(quán)值。本文采用梯度下降法,每循環(huán)一次,相應(yīng)地調(diào)節(jié)一次。第二個部分是執(zhí)行添加操作。添加的策略是根據(jù)輸出誤差在輸入空間分布的不均勻性而提出的。如果執(zhí)行該操作過頻,不但會減小隱層節(jié)點的中心位置和權(quán)值的調(diào)節(jié)速度,而且會造成隱層節(jié)點數(shù)目過多,計算量增大,導(dǎo)致過度擬合??紤]到以上因素,采用間歇的方式執(zhí)行添加操作,只有當(dāng)i=4n+1(n=0,1,2,…)時,才執(zhí)行添加操作。第三個部分是執(zhí)行刪除操作。如果執(zhí)行該操作過頻,對于一些新增加的隱層節(jié)點,其中心位置和權(quán)值有可能還沒來得及調(diào)整就已經(jīng)被刪除了,所以也采用間歇的方式執(zhí)行。當(dāng)i=8m+7(m=0,1,2,…)時,才執(zhí)行刪除操作。
2.4 RBF網(wǎng)絡(luò)參數(shù)調(diào)整算法
   
本文采用梯度下降法調(diào)整RBF的隱層節(jié)點中心位置和權(quán)值。設(shè)隱層節(jié)點的數(shù)目為m,一共有N組訓(xùn)練樣本:(x,y)={(x1,y1),(x2,y2),…,(xN,yN)}。神經(jīng)網(wǎng)絡(luò)的實際輸出為:。選取均方差為誤差函數(shù),取ρ1和ρ2為學(xué)習(xí)率。
    (1)調(diào)整隱層節(jié)點的權(quán)值
   
    (2)調(diào)整隱層節(jié)點中心的位置

   


3 仿真實例
   
(1)對隨機(jī)曲面進(jìn)行恢復(fù)
    仿真中定義曲面方程如下:
   
    原始數(shù)據(jù)集所得曲面圖像如圖2所示。


    以x(x=x1,x2)為輸入矢量,其中,x1和x2分別以1為間隔在區(qū)間[0,9]內(nèi)均勻取值,一共得到100組輸入數(shù)據(jù)(x1,x2)。選取ε=0.02,θ=0.3,ρ1=0.1,ρ2=0.05。經(jīng)過20次訓(xùn)練,最后得到的網(wǎng)絡(luò)具有41個隱層節(jié)點,系統(tǒng)的均方誤差為0.023 3。擬合后的曲面圖像如圖3所示。


    (2)對θ取不同值時的比較,結(jié)果如表1~表3所示。



4 結(jié)語
   
針對RBF神經(jīng)網(wǎng)絡(luò)隱層節(jié)點的參數(shù)和數(shù)量難以確定的問題,提出了一種自適應(yīng)的學(xué)習(xí)算法。該算法事先不需要確定隱層節(jié)點的中心位置和數(shù)量,而是通過相應(yīng)的添加和刪除策略實現(xiàn)的。添加策略是根據(jù)輸出誤差在輸入空間分布的不均勻而提出的,通過執(zhí)行相應(yīng)的操作可以使隱層節(jié)點的數(shù)目在學(xué)習(xí)過程中自適應(yīng)的增加。同時,為了使隱層節(jié)點數(shù)目不過于膨脹,還制定了刪除策略。它先分析每個隱層節(jié)點對整個網(wǎng)絡(luò)所作的貢獻(xiàn),然后刪除貢獻(xiàn)小的節(jié)點,以保持網(wǎng)絡(luò)結(jié)構(gòu)簡單。仿真研究表明,該網(wǎng)絡(luò)不僅靈活性高,結(jié)構(gòu)簡單,精度高,而且具有較好的泛化能力。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

武漢2025年9月9日 /美通社/ -- 7月24日,2025慧聰跨業(yè)品牌巡展——湖北?武漢站在武漢中南花園酒店隆重舉辦!本次巡展由慧聰安防網(wǎng)、慧聰物聯(lián)網(wǎng)、慧聰音響燈光網(wǎng)、慧聰LED屏網(wǎng)、慧聰教育網(wǎng)聯(lián)合主辦,吸引了安防、...

關(guān)鍵字: AI 希捷 BSP 平板

上海2025年9月9日 /美通社/ -- 9月8日,移遠(yuǎn)通信宣布,其自研藍(lán)牙協(xié)議棧DynaBlue率先通過藍(lán)牙技術(shù)聯(lián)盟(SIG)BQB 6.1標(biāo)準(zhǔn)認(rèn)證。作為移遠(yuǎn)深耕短距離通信...

關(guān)鍵字: 藍(lán)牙協(xié)議棧 移遠(yuǎn)通信 COM BSP

上海2025年9月9日 /美通社/ -- 為全面落實黨中央、國務(wù)院和上海市委、市政府關(guān)于加快發(fā)展人力資源服務(wù)業(yè)的決策部署,更好發(fā)揮人力資源服務(wù)業(yè)賦能百業(yè)作用,8月29日,以"AI智領(lǐng) HR智鏈 靜候你來&quo...

關(guān)鍵字: 智能體 AI BSP 人工智能

北京2025年9月8日 /美通社/ -- 近日,易生支付與一汽出行達(dá)成合作,為其自主研發(fā)的"旗馭車管"車輛運(yùn)營管理平臺提供全流程支付通道及技術(shù)支持。此次合作不僅提升了平臺對百余家企業(yè)客戶的運(yùn)營管理效率...

關(guān)鍵字: 一汽 智能化 BSP SAAS

深圳2025年9月8日 /美通社/ -- 晶泰科技(2228.HK)今日宣布,由其助力智擎生技制藥(PharmaEngine, Inc.)發(fā)現(xiàn)的新一代PRMT5抑制劑PEP0...

關(guān)鍵字: 泰科 AI MT BSP

上海2025年9月5日 /美通社/ -- 由上海市經(jīng)濟(jì)和信息化委員會、上海市發(fā)展和改革委員會、上海市商務(wù)委員會、上海市教育委員會、上海市科學(xué)技術(shù)委員會指導(dǎo),東浩蘭生(集團(tuán))有限公司主辦,東浩蘭生會展集團(tuán)上海工業(yè)商務(wù)展覽有...

關(guān)鍵字: 電子 BSP 芯片 自動駕駛

推進(jìn)卓越制造,擴(kuò)大產(chǎn)能并優(yōu)化布局 蘇州2025年9月5日 /美通社/ --?耐世特汽車系統(tǒng)與蘇州工業(yè)園區(qū)管委會正式簽署備忘錄,以設(shè)立耐世特亞太總部蘇州智能制造項目。...

關(guān)鍵字: 智能制造 BSP 汽車系統(tǒng) 線控

慕尼黑和北京2025年9月4日 /美通社/ -- 寶馬集團(tuán)宣布,新世代首款量產(chǎn)車型BMW iX3將于9月5日全球首發(fā),9月8日震撼亮相慕尼黑車展。中國專屬版車型也將在年內(nèi)與大家見面,2026年在國內(nèi)投產(chǎn)。 寶馬集團(tuán)董事...

關(guān)鍵字: 寶馬 慕尼黑 BSP 數(shù)字化

北京2025年9月4日 /美通社/ --?在全球新一輪科技革命與產(chǎn)業(yè)變革的澎湃浪潮中,人工智能作為引領(lǐng)創(chuàng)新的核心驅(qū)動力,正以前所未有的深度與廣度重塑各行業(yè)發(fā)展格局。體育領(lǐng)域深度融入科技變革浪潮,駛?cè)霐?shù)字化、智能化轉(zhuǎn)型快車...

關(guān)鍵字: 人工智能 智能體 AI BSP

上海2025年9月2日 /美通社/ -- 近日,由 ABB、Moxa(摩莎科技)等八家企業(yè)在上海聯(lián)合發(fā)起并成功舉辦"2025 Ethernet-APL 技術(shù)應(yīng)用發(fā)展大會"。會議以"破界?融合...

關(guān)鍵字: ETHERNET 智能未來 BSP 工業(yè)通信
關(guān)閉