女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當前位置:首頁 > 電源 > 電源AC/DC
[導讀]使用高速ADC(模數(shù)轉換器)進行產品開發(fā)時,或者評估這些器件以便用于設計時,必須注意ADC的輸出諧波。ADC通常使用差分輸入,使共模噪聲和失真降至最低,但只有在平衡和對稱的

使用高速ADC(模數(shù)轉換器)進行產品開發(fā)時,或者評估這些器件以便用于設計時,必須注意ADC的輸出諧波。ADC通常使用差分輸入,使共模噪聲和失真降至最低,但只有在平衡和對稱的情況下,這些輸入才能發(fā)揮最大效用??梢允褂靡粋€由兩個RF信號發(fā)生器和一個振蕩器組成的測試系統(tǒng),來測量差分不平衡對ADC輸入的影響。

當ADC的差分模擬輸入由于驅動錯相而變得不平衡時,器件輸出中的偶次階失真會提高。下面說明如何測量高速ADC的諧波性能,以便了解差分不平衡的影響。

1 測試設置

測試設置(如圖1所示)使用兩個RF信號發(fā)生器驅動2 MHz至300 MHz頻率范圍的ADC模擬輸入。必須使信號發(fā)生器的參考頻率彼此鎖定,這樣有助于限制相位隨時間變化而發(fā)生的非預期漂移。每個信號發(fā)生器的輸出均通過一個低通濾波器,低通濾波器連接到一個雙路低損耗分路器,從而可以利用示波器來觀察差分信號。各輸入端應使用相同制造商和型號的低損耗分路器。為了使用ADC,需要一個評估板。此外,分路器前應使用兩個相同制造商和型號的低通濾波器或帶通濾波器,以便限制來自信號發(fā)生器的寬帶噪聲。

圖1 用于測量相位不平衡的測試設置

一致的模擬信號路徑可以將測量誤差降至最小。分路器前后的電纜應為同一類型并且長度相同。從信號發(fā)生器到分路器的電纜長度必須相同,這點很容易明白。分路器之后的電纜長度(連接到ADC和示波器)容易忽略,也需要相同的長度以保護測量結果。如果評估板上具有從連接點到ADC引腳的走線,則從分路器到示波器也必須復制相同長度的走線。因此,考慮到走線差異,從分路器到示波器的電纜長度可能需要略有不同。同等信號路徑可確保您在示波器上查看的信號能夠準確代表ADC模擬輸入引腳上的信號。

推薦方法似乎應當是把示波器探頭引線直接焊接到ADC的模擬輸入端,以便獲得正確的長度匹配,但這種方法會增加ADC探測模擬輸入端的寄生電容和電感,引起測量波動。適當?shù)奶筋^結合電纜和分路器,可以將寄生電容和電感降至最低,從而在示波器上產生更干凈的信號。

務必使用適當帶寬的示波器,以便顯示差分模擬輸入測試頻率。注意隨時監(jiān)控各信號發(fā)生器,測試信號應保持穩(wěn)定??梢允褂檬静ㄆ鞯臄?shù)學功能來確保兩個信號具有正確的相位和幅度關系,即當差分輸入180°反相時,信號A + 信號B應盡可能接近0 V。當然,隨著信號偏離180°,信號幅度之和應增大,但無論相位如何偏移,都應當能夠使用該信號。由此便可確定正確的相位參考點(180°反相),從該點開始測試。

評估板需要一個干凈的時鐘信號。務必使用低相位噪聲的振蕩器或信號源,這樣才不會限制ADC的性能。ADI公司使用250 MHz Wenzel晶振和TTE 250 MHz帶通濾波器。圖2從左至右分別顯示的是示波器、濾波器和高速ADC評估板。

圖2 由示波器、低通濾波器和ADC評估板(從左至右) 組成的采樣時鐘設置

當ADC的模擬輸入與示波器不同相時,兩個信號之間的差分幅度不匹配會導致ADC輸入信號的基頻功率略有降低。應使用FFT(快速傅里葉變換)監(jiān)控測試頻率在所有相位變化下的基頻電平。對幅度進行微調,確保ADC始終以相同的電平工作?;l功率的差異會導致結果不準確,說明ADC由于相位和基頻功率變得不準確而表現(xiàn)不佳。

圖3顯示同一器件以相同頻率工作,并使用ADI公司Visual Analog軟件獲得的兩個FFT讀數(shù)。圖3a和圖3b分別突出顯示了當兩個輸入信號之間的相位差為0°(圖3a)和20°(圖3b)時的基頻幅度差異,圖3b中的二次諧波功率有所提高。

圖3 a) 當兩個輸入信號之間的相位差偏移20° (b)時, 二次諧波(標記為“2”)的功率提高

2 測試程序

要開始測試,請設置其中一個信號發(fā)生器產生相位偏移等于0°的信號,并設置另一個信號發(fā)生器,使示波器顯示兩個相差180°的波形。這兩個波形的幅度彼此接近,頻率完全相同,使用示波器的數(shù)學功能(通道A + 通道B)將得到一條基本上為0 V的平坦直線。注意,由于發(fā)生器本身存在誤差,信號發(fā)生器不一定需要設置完全相同的幅度。這里的任何差異都是由信號發(fā)生器本身相對于頻率的參考增益和相位誤差引起的,因此,必須使用示波器將相位或幅度誤差調零,從而盡可能降低測量誤差。接下來,您可以讓一個信號發(fā)生器在0°相位偏移下掃描+30°至-30°,同時另一個信號發(fā)生器的相位保持不變。

您需要選擇某一基頻功率,然后在整個測試過程中維持該功率不變。本次試驗中,我們將各信號發(fā)生器的基頻信號功率設置為-6 dBFS。設置基頻信號的功率后,應利用示波器的數(shù)學功能檢查兩個信號的相位和幅度。數(shù)學功能的峰峰值電平應盡可能接近0。一旦測量系統(tǒng)處于平衡狀態(tài),就可以使用該點作為0°錯相參考起始點。

測試應包括保存+30°至-30°范圍(相對于信號相差180°時的參考點)內每一度錯相的ADC二次和三次諧波性能。當兩個信號的相位差偏離180°時,載波信號的功率會像前面的圖3所示一樣下降。因此,需要利用兩個信號發(fā)生器的輸出幅度,使基頻信號的功率水平保持不變。使用示波器來確認信號幅度,在時域中顯示經過任何調整之后的信號。一旦采集到30個數(shù)據(jù)點(1°偏移至30°偏移),就可以設置信號發(fā)生器輸出電平,使其信號再次相差180°,并且重新調整幅度,確保不發(fā)生任何未知的幅度或相位漂移。對于從0°參考點開始的-1°至-30°偏移,重復上述程序。

在轉換器或其目標應用的有用帶寬內執(zhí)行測量。本次試驗中,我們使用了2 MHz、70 MHz、170 MHz和300 MHz的輸入頻率,同時調整了分路器前的濾波器帶寬,以支持測試信號的適當帶寬。

3 測試結果

圖4顯示了從2 MHz到300 MHz輸入頻率的歸一化數(shù)據(jù)集合。低頻對相位不平衡的耐受能力高于高頻。此圖顯示諧波功率隨著頻率而提高。這些測量數(shù)據(jù)顯示的相對測量結果,目的不在于說明ADC的真實性能,而是讓您了解模擬輸入信號相位不平衡時的變化趨勢。

圖4 低頻時的二次諧波功率低于高頻時的二次諧波功率

由于正向和負向的相位變化產生的結果相似,因此對正偏移和負偏移產生的諧波進行平均,并且歸一化到零點。通過試驗可以看出,隨著頻率升高,相位對器件的二次諧波性能有直接影響。

圖5以地形圖形式顯示了相位偏差、模擬輸入頻率和二次諧波性能之間的關系。隨著相位偏差增大,所有頻率的輸入信號(dB)都下降,表現(xiàn)為輸入信號的二次諧波幅度提高。

圖5 二次諧波功率與頻率和相位偏差的關系

圖6與圖4相似,顯示了每個頻率下歸一化輸入信號的三次諧波性能。相位偏差對三次諧波的影響遠小于對二次諧波的影響。無論是低頻還是高頻,轉換器的性能相對于任何相位偏差都是平坦的。

圖6 無論頻率高低,三次諧波功率的差別不大

圖7以地形圖形式顯示了三次諧波的平均性能。只需看看刻度的差異,就能明白轉換器的三次諧波性能與頻率相位偏差的關系不像二次諧波那樣密切,這是因為ADC的奇數(shù)階非線性主要取決于轉換器對調整、校準、設計或工藝限制的響應。

圖7 諧波功率與頻率和相位偏移的關系說明:功率提高是相位偏移的結果,而不是頻率偏移的結果

4 結語

上述測量進一步證實,偶次階失真與平衡和對稱有關。同時還表明,為了實現(xiàn)數(shù)據(jù)手冊所述的性能,前端輸入網(wǎng)絡設計需要確保ADC模擬輸入引腳的模擬輸入(通常表示為AIN+/-或VIN+/-)之間的相位偏差在±3-4°范圍內。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

在精密模擬電路設計中,電源噪聲與共模干擾已成為制約系統(tǒng)信噪比的核心瓶頸。以16位ADC采集系統(tǒng)為例,電源紋波每增加1mV可能引入0.5LSB的量化誤差,而共模干擾通過寄生電容耦合至差分輸入端時,可使有效位數(shù)(ENOB)下...

關鍵字: 模擬電路 抗干擾設計 電源去耦 共模噪聲

共模電感是一個以鐵氧體為磁芯的共模干擾抑制器件,它由兩個尺寸相同,匝數(shù)相同的線圈對稱地繞制在同一個鐵氧體環(huán)形磁芯上,形成一個四端器件,要對于共模信號呈現(xiàn)出大電感具有抑制作用,而對于差模信號呈現(xiàn)出很小的漏電感幾乎不起作用。

關鍵字: 共模電感 共模噪聲

在電子系統(tǒng)設計中,差分輸入至差分輸出放大器因其能夠有效抑制共模噪聲、提高信號質量而備受青睞。然而,在高溫環(huán)境下,傳統(tǒng)放大器的性能往往會受到嚴重影響,如增益降低、共模抑制比(CMRR)下降等。因此,開發(fā)一種適用于高溫環(huán)境的...

關鍵字: 差分輸出放大器 共模抑制比 共模噪聲

共模電感是一種特殊的電子元件,它的主要作用是抑制共模噪聲,對差模信號無影響。

關鍵字: 共模電感 共模噪聲

儀表放大器又名INO,可放大電壓變化并提供與任何其他運算放大器一樣的差分輸出。但與普通放大器不同,儀表放大器將具有高輸入阻抗和良好增益,同時通過全差分輸入提供共模噪聲抑制。

關鍵字: 儀表放大器 運算放大器 共模噪聲

差分信號(DifferenTIal Signal)在高速電路設計中的應用越來越廣泛,電路中最關鍵的信號往往都要采用差分結構設計,什么另它這么倍受青睞呢?在PCB設計中又如何能保證其良好的性能呢?帶著這兩個問題,我們進行下...

關鍵字: 差分信號 共模噪聲

噪聲傳導有兩種模式,一種為差模傳導,一種為共模傳導。線路中的噪聲電流進入和流出,相同大小的電流以相反方向流動,總和始終為零,這種稱之為差模傳導。線路中的噪聲電流以相同的方向流動,線路承受著相同的電壓,這種稱之為共模傳導。...

關鍵字: EMC 差模噪聲 共模噪聲

傳導噪聲可分為兩種。一種是“差模噪聲”,也稱為“常模噪聲”。

關鍵字: 差模噪聲 共模噪聲

太陽的光線出現(xiàn)在生活中的每一個地方,人們的生活已經離不開太陽,太陽能不僅為植物生長提供光源,而且也能為人類提供能源,現(xiàn)在的光伏發(fā)電就是很大程度上利用了太陽能。據(jù)最新一期《美國國家科學院院刊》報道,美國萊斯大學利用廉價塑料...

關鍵字: 氫燃料 電源技術解析 太陽能海水 淡化系統(tǒng)

在現(xiàn)在的生活中,太陽能產品處處可見,人們用太陽能煮飯,還有太陽能熱水器等等,無處不見太陽能產品,當然,最重要的還是太陽能發(fā)電,但是目前的技術并不能讓人們很好利用太陽能發(fā)電。日前,科技部發(fā)布了《國家重點研發(fā)計劃“可再生能源...

關鍵字: 電池組件 電源技術解析 鈣鈦礦 協(xié)鑫
關閉