女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁(yè) > 廠商動(dòng)態(tài) > ADI
[導(dǎo)讀]本文將闡述為何非隔離式DC-DC降壓轉(zhuǎn)換器(在本文中簡(jiǎn)稱(chēng)為降壓轉(zhuǎn)換器)在高輸出電流下將高DC輸入電壓轉(zhuǎn)換為很低的輸出電壓時(shí)會(huì)面臨嚴(yán)峻挑戰(zhàn)。本文將介紹可以實(shí)現(xiàn)高降壓比,同時(shí)保持小尺寸的三種不同方法。

問(wèn)題:

在高降壓比下實(shí)現(xiàn)緊湊設(shè)計(jì)的方法有哪些?

答案:

本文將闡述為何非隔離式DC-DC降壓轉(zhuǎn)換器(在本文中簡(jiǎn)稱(chēng)為降壓轉(zhuǎn)換器)在高輸出電流下將高DC輸入電壓轉(zhuǎn)換為很低的輸出電壓時(shí)會(huì)面臨嚴(yán)峻挑戰(zhàn)。本文將介紹可以實(shí)現(xiàn)高降壓比,同時(shí)保持小尺寸的三種不同方法。

簡(jiǎn)介

系統(tǒng)設(shè)計(jì)人員可能會(huì)面臨以下挑戰(zhàn):在高輸出電流下將高DC輸入電壓下變頻為極低輸出電壓(例如在3.5 A時(shí)從60 V降至3.3 V),同時(shí)保持系統(tǒng)的高效率、小尺寸并實(shí)現(xiàn)簡(jiǎn)單設(shè)計(jì)。

將高輸入-輸出電壓差值與高電流結(jié)合使用,會(huì)因?yàn)楣倪^(guò)高自動(dòng)將線(xiàn)性穩(wěn)壓器排除在外。因此,設(shè)計(jì)人員必須在這些條件下選擇開(kāi)關(guān)拓?fù)?。但是,即使使用這種拓?fù)?,?duì)于空間有限的應(yīng)用要實(shí)現(xiàn)足夠緊湊的設(shè)計(jì)仍然相當(dāng)困難。

DC-DC降壓轉(zhuǎn)換器面臨的挑戰(zhàn)

要實(shí)現(xiàn)高降壓比,一種方案是使用降壓轉(zhuǎn)換器,因?yàn)樗菍⑤斎腚妷焊咝Ы抵粮偷妮敵鲭妷?例如,VIN = 12 V降至VOUT = 3.3 V)、仍然具有大量電流,且保持小尺寸的一種拓?fù)溥x項(xiàng)。但是,在某些情況下,降壓轉(zhuǎn)換器要保持輸出電壓穩(wěn)定,會(huì)面臨嚴(yán)峻的挑戰(zhàn)。為了理解這些挑戰(zhàn),我們需要記住,在連續(xù)導(dǎo)通模式(CCM)下工作的降壓轉(zhuǎn)換器的占空比(D)可簡(jiǎn)化為:

占空比和開(kāi)關(guān)頻率(fSW)的關(guān)系如下所示,其中導(dǎo)通時(shí)間(tON)是指在每次開(kāi)關(guān)期間(T),控制FET保持開(kāi)啟的時(shí)長(zhǎng):

結(jié)合公式1和公式2可以看出,tON如何受降壓比和fSW的影響:

從公式3可以看出,當(dāng)輸入-輸出電壓比(VIN/VOUT)和/或fSW增大時(shí),導(dǎo)通時(shí)間會(huì)降低。這意味著降壓轉(zhuǎn)換器必須能夠以很低的導(dǎo)通時(shí)間運(yùn)行,以便在高VIN/VOUT比率下調(diào)節(jié)CCM中的輸出電壓,而在高fSW下這會(huì)更難實(shí)現(xiàn)。

我們假設(shè)在一個(gè)應(yīng)用中,VIN(MAX) = 60 V,VOUT = 3.3 V,IOUT(MAX) = 3.5 A。在必要時(shí),我們需要使用LT8641數(shù)據(jù)手冊(cè)中的數(shù)值,因?yàn)樵谥蟮恼鹿?jié)中,我們將提供采用LT8641的解決方案。所需的最小導(dǎo)通時(shí)間(tON(MIN))對(duì)應(yīng)最高輸入電壓(VIN(MAX))。為了評(píng)估這個(gè)tON(MIN),建議提高公式3的準(zhǔn)確度。通過(guò)包含降壓轉(zhuǎn)換器的兩個(gè)功率MOSFET的壓降VSW(BOT)和VSW(TOP),并用VIN(MAX)替代VIN,我們得出:

通過(guò)在公式4中使用VIN(MAX)、fSW = 1 MHz,我們得出tON(MIN)為61 ns。為了計(jì)算VSW(BOT)和VSW(TOP),我們使用了LT8641數(shù)據(jù)手冊(cè)中提供的RDS(ON)(BOT)和RDS(ON)(TOP)值,且已知VSW(BOT) = RDS(ON)(BOT) × IOUT(MAX),VSW(TOP) = RDS(ON)(TOP) × IOUT(MAX)。

從上述公式可得到61 ns的數(shù)值,這樣短的時(shí)間數(shù)值,降壓轉(zhuǎn)換器很難保證tON(MIN);所以,系統(tǒng)設(shè)計(jì)人員不得不尋找可替代的拓?fù)洹D壳疤峁┤N可實(shí)現(xiàn)高降壓比的可行解決方案。

三種緊湊型解決方案,VIN(MAX) = 60 V,VOUT = 3.3 V,IOUT(MAX) = 3.5 A

解決方案1:使用LT3748非光耦反激式變壓器

第一種選擇是使用隔離拓?fù)?,變壓器具有N:1匝數(shù)比,負(fù)責(zé)執(zhí)行大部分下變頻。為此,ADI公司提供反激式控制器,例如LT3748,該控制器不需要第三個(gè)變壓器繞組或光隔離器,使設(shè)計(jì)更簡(jiǎn)單,更緊湊。圖1顯示適用于這種情況的LT3748解決方案。

盡管與標(biāo)準(zhǔn)反激式設(shè)計(jì)相比,LT3748解決方案簡(jiǎn)化了設(shè)計(jì)并節(jié)省了空間,但仍然需要使用變壓器。對(duì)于無(wú)需隔離輸入端和輸出端的應(yīng)用,最好是避免使用該組件,相比非隔離解決方案,該組件會(huì)增加設(shè)計(jì)復(fù)雜性和增大尺寸。

解決方案2:使用LTM8073和LTM4624 μModule器件

作為一種替代方案,設(shè)計(jì)人員可以通過(guò)兩個(gè)步驟進(jìn)行下變頻。要實(shí)現(xiàn)更少的組件數(shù)量(僅為10個(gè)),可以使用2個(gè)μModule®器件和8個(gè)外部組件,如圖2所示。此外,這兩款μModule器件已集成各自的功率電感,為系統(tǒng)工程師免除了一項(xiàng)困難的設(shè)計(jì)任務(wù)。LTM8073和LTM4624均采用BGA封裝,尺寸分別為9 mm × 6.25 mm × 3.32 mm和6.25 mm × 6.25 mm × 5.01 mm (L × W × H),可提供小尺寸解決方案。

由于在這些條件下LTM4624展現(xiàn)的效率為89%,LTM8073最多為L(zhǎng)TM4624的輸入端提供1.1 A。由于LTM8073可以提供高達(dá)3 A輸出電流,因此可用來(lái)為其他電源軌供電。為此,在圖2中,我們選擇12 V作為中間電壓(VINT)。

盡管應(yīng)避免使用變壓器,但有些設(shè)計(jì)人員可能不愿使用需要兩個(gè)獨(dú)立的降壓轉(zhuǎn)換器的解決方案,尤其是無(wú)需采用中間電壓為其他電源軌供電的情況下。

解決方案3:使用LT8641降壓轉(zhuǎn)換器

所以,在許多情況下,使用單個(gè)降壓轉(zhuǎn)換器成為首選,因?yàn)樗潜容^理想的解決方案,具有系統(tǒng)效率高、小尺寸和設(shè)計(jì)簡(jiǎn)單的特點(diǎn)。但是,我們前面不是展示降壓轉(zhuǎn)換器無(wú)法應(yīng)對(duì)高VIN/VOUT和高fSW嗎?

這個(gè)說(shuō)法可能適用于大部分降壓轉(zhuǎn)換器,但并非全部。ADI產(chǎn)品系列中包含LT8641之類(lèi)降壓轉(zhuǎn)換器,在整個(gè)工作溫度范圍內(nèi),它具有較短的最低導(dǎo)通時(shí)間,一般為35 ns(最大50 ns)。這些規(guī)格都在之前計(jì)算得出的61 ns最小導(dǎo)通時(shí)間以下,為我們提供了第3種可行的緊湊型解決方案。圖3顯示LT8641電路有多么簡(jiǎn)單。

還有一點(diǎn)值得注意,LT8641解決方案可能是3種解決方案中最高效的。事實(shí)上,如果與圖3相比必須進(jìn)一步優(yōu)化效率,我們可以降低fSW并選擇更大的電感尺寸。

盡管也可以通過(guò)解決方案2來(lái)降低fSW,但集成功率電感后無(wú)法靈活提高效率,達(dá)到高于某個(gè)點(diǎn)的目標(biāo)。此外,使用兩個(gè)連續(xù)下變頻級(jí)對(duì)效率的負(fù)面影響較小。

在使用解決方案1時(shí),由于在邊界模式下運(yùn)行,以及在非光學(xué)反饋設(shè)計(jì)中移除了所有組件,因此反激式設(shè)計(jì)的效率非常高。但是,效率不能完全優(yōu)化,因?yàn)榭蛇x的變壓器數(shù)量有限,而解決方案3則有廣泛的電感產(chǎn)品系列可供選擇。

圖1.采用LT3748的電路解決方案,將60 V輸入下變頻至3.3 V輸出。

圖2.采用LTM8073和LTM4624的電路解決方案,將60 V輸入下變頻至3.3 V輸出。

圖3.采用LT8641的電路解決方案,將60 V輸入下變頻至3.3 V輸出。

檢查L(zhǎng)T8641是否滿(mǎn)足要求的另一種方法

在大多數(shù)應(yīng)用中,公式4中唯一可調(diào)的參數(shù)是開(kāi)關(guān)頻率。因此,我們重新變換公式4,以評(píng)估LT8641在給定條件下允許的最大fSW。于是,我們得到公式5,LT8641數(shù)據(jù)手冊(cè)的第16頁(yè)也提供了這個(gè)公式。

我們?cè)谝韵率纠惺褂么斯剑篤IN = 48 V,VOUT = 3.3 V,IOUT(MAX) = 1.5 A,fSW = 2 MHz。汽車(chē)和工業(yè)應(yīng)用中經(jīng)常使用48 V輸入電壓。在公式5中代入這些條件后,我們得出:

因此,在給定的應(yīng)用條件下,在fSW高達(dá)2.12 MHz時(shí),LT8641能夠安全運(yùn)行,證實(shí)LT8641是適合此應(yīng)用的一個(gè)不錯(cuò)的選擇。

結(jié)論

本文提出了三種不同的方法,以在高降壓比下實(shí)現(xiàn)緊湊型設(shè)計(jì)。LT3748反激式解決方案不需要使用笨重的光隔離器,推薦用于需要隔離輸入端和輸出端的設(shè)計(jì)。第2種方法需要使用LTM8073和LTM4624 μModule器件,當(dāng)設(shè)計(jì)人員為應(yīng)用選擇最佳電感猶豫不決,以及/或何時(shí)必須提供額外的中間電源軌時(shí),這種解決方案會(huì)非常有用。第3種方法基于LT8641降壓轉(zhuǎn)換器進(jìn)行設(shè)計(jì),如果只是要求實(shí)現(xiàn)陡電壓下變頻時(shí),可提供緊湊且簡(jiǎn)單的解決方案。

作者簡(jiǎn)介

Olivier Guillemant是ADI公司的核心應(yīng)用工程師,工作地點(diǎn)在德國(guó)慕尼黑。他為歐洲的廣泛市場(chǎng)客戶(hù)提供Power by Linear產(chǎn)品組合的設(shè)計(jì)支持。他自2000年起擔(dān)任過(guò)各種電源應(yīng)用職位,于2021年加入ADI公司,擁有法國(guó)里爾大學(xué)的電子和電信碩士學(xué)位。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見(jiàn),不僅增加了維護(hù)成本,還影響了用戶(hù)體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(chē)(EV)作為新能源汽車(chē)的重要代表,正逐漸成為全球汽車(chē)產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車(chē)的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車(chē)的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車(chē) 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車(chē)場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周?chē)娮釉O(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開(kāi)關(guān)電源具有效率高的特性,而且開(kāi)關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開(kāi)關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉