女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當(dāng)前位置:首頁(yè) > 廠商動(dòng)態(tài) > 派恩杰半導(dǎo)體
[導(dǎo)讀]近年來(lái),因?yàn)樾履茉雌嚒⒐夥皟?chǔ)能、各種電源應(yīng)用等下游市場(chǎng)的驅(qū)動(dòng),碳化硅功率器件取得了長(zhǎng)足發(fā)展。更快的開關(guān)速度,更好的溫度特性使得系統(tǒng)損耗大幅降低,效率提升,體積減小,從而實(shí)現(xiàn)變換器的高效高功率密度化。但是,像碳化硅這樣的寬帶隙(WBG)器件也給應(yīng)用研發(fā)帶來(lái)了設(shè)計(jì)挑戰(zhàn),因而業(yè)界對(duì)于碳化硅 MOSFET平面柵和溝槽柵的選擇和權(quán)衡以及其浪涌電流、短路能力、柵極可靠性等仍心存疑慮。

近年來(lái),因?yàn)?a href="/tags/新能源汽車" target="_blank">新能源汽車、光伏及儲(chǔ)能、各種電源應(yīng)用等下游市場(chǎng)的驅(qū)動(dòng),碳化硅功率器件取得了長(zhǎng)足發(fā)展。更快的開關(guān)速度,更好的溫度特性使得系統(tǒng)損耗大幅降低,效率提升,體積減小,從而實(shí)現(xiàn)變換器的高效高功率密度化。但是,像碳化硅這樣的寬帶隙(WBG)器件也給應(yīng)用研發(fā)帶來(lái)了設(shè)計(jì)挑戰(zhàn),因而業(yè)界對(duì)于碳化硅MOSFET平面柵和溝槽柵的選擇和權(quán)衡以及其浪涌電流、短路能力、柵極可靠性等仍心存疑慮。

碳化硅MOSFET性能如何?

650V-1200V電壓等級(jí)的SiC MOSFET商業(yè)產(chǎn)品已經(jīng)從Gen 2發(fā)展到了Gen 3,隨著技術(shù)的發(fā)展,元胞寬度持續(xù)減小,比導(dǎo)通電阻持續(xù)降低,器件性能超越Si器件,浪涌電流、短路能力、柵氧可靠性等可靠性問題備受關(guān)注。那么SiC MOSFET體二極管能抗多大的浪涌電流?其短路能力如何?如何保證柵極可靠性?

SiCMOSFET的體二極管抗浪涌電流大小與芯片的大小成正比。像派恩杰半導(dǎo)體采用自己搭建的10ms正弦半波浪涌極限測(cè)試平臺(tái)和10us方波半波浪涌極限測(cè)試平臺(tái)對(duì)其1200V的SiC MOSFET P3M12080K3進(jìn)行抽樣測(cè)試10msIFSM>120A, 10us IFSM>1100A。

從硅過(guò)渡到碳化硅,MOSFET的結(jié)構(gòu)及性能優(yōu)劣勢(shì)對(duì)比

圖110ms浪涌極限測(cè)試平臺(tái)

從硅過(guò)渡到碳化硅,MOSFET的結(jié)構(gòu)及性能優(yōu)劣勢(shì)對(duì)比

圖2 10us浪涌極限測(cè)試平臺(tái)

至于短路能力,相較與SiIGBT,SiCMOSFET電流密度更高且柵極氧化層較薄,其短路能力要弱于SiIGBT,但其依然有一定的短路能力。

下表是派恩杰半導(dǎo)體部分產(chǎn)品短路能力:

表11200V/650VMOSFET器件短路耐量

No.
Value
Unit
Test Condition
P3M12017K4
3.4
μS
VDS = 800V, Rgon = 8.2Ω, Rgon = 7.5Ω, Vgs = -5/20V, Tj = 25℃
P3M12025K4
3.4
μS
VDS = 800V, Rgon = 8.2Ω, Rgon = 7.5Ω, Vgs = -3/15V, Tj = 25℃
P3M12080K4
3.0
μS
VDS = 800V, Rgon = 8.2Ω, Rgon = 7.5Ω, Vgs = -3/15V, Tj = 25℃
P3M06060K4
6.0
μS
VDS = 400V, Rgon = 8.2Ω, Rgon = 7.5Ω, Vgs = -3/15V, Tj = 25℃

派恩杰半導(dǎo)體針對(duì)柵極的可靠性是嚴(yán)格按照AEC-Q101標(biāo)準(zhǔn)進(jìn)行,在柵極分別加負(fù)壓和正壓(-4V/+15V)溫度175℃下進(jìn)行HTGBR和HTRB實(shí)驗(yàn)1000h無(wú)產(chǎn)品失效。除了常規(guī)AEC-Q101中要求的1000h小時(shí)實(shí)驗(yàn),派恩杰半導(dǎo)體對(duì)于柵極壽命經(jīng)行了大量研究。由于SiC/SiO2界面存在比Si/SiO2更大數(shù)量級(jí)的雜質(zhì)缺陷,因此SiCMOSFET通常擁有更高的早期失效概率。為了提高SiCMOSFET的柵極可靠性,通過(guò)篩選識(shí)別并出早期失效非常重要。派恩杰半導(dǎo)體通過(guò)TDDB實(shí)驗(yàn)建立柵氧加速模型并建立篩選機(jī)制來(lái)消除潛在的失效可能性器件(可見往期推送)。

除了TDDB外,當(dāng)正常器件使用時(shí),由于半導(dǎo)體-氧化界面處缺陷的產(chǎn)生或充放電,SiCMOSFET的閾值電壓會(huì)有漂移現(xiàn)象,閾值電壓的漂移可能對(duì)器件長(zhǎng)期運(yùn)行產(chǎn)生明顯影響。派恩杰半導(dǎo)體在高溫條件下給SiC MOSFET施加恒定的DC偏壓,觀察其閾值電壓的變化量。一般施加正向偏壓應(yīng)力時(shí),閾值電壓向更高的電壓偏移;施加負(fù)向偏壓應(yīng)力時(shí),閾值電壓向更低的電壓偏移。這種效應(yīng)是由于SiC/SiO2界面處或附近的載流子捕獲引起的,負(fù)向高壓是MOS界面附近的空穴被俘獲,產(chǎn)生更多的空穴陷阱;相反正向高壓造成電子的俘獲。當(dāng)然,也有的競(jìng)品產(chǎn)品在施加正向偏壓應(yīng)力時(shí),閾值電壓向更低的電壓偏移;施加負(fù)向偏壓應(yīng)力時(shí),閾值電壓向更高的電壓偏移。這是由于可移動(dòng)離子在SiC/SiO2界面積累造成的,正向的偏壓使得正性的可移動(dòng)離子在SiO2/SiC界面積累,造成閾值電壓負(fù)向漂移;負(fù)向的偏壓使得正性的可移動(dòng)離子在poly/SiO2界面積累,造成閾值電壓正偏。為評(píng)估器件在使用過(guò)程中閾值電壓漂移情況,派恩杰半導(dǎo)體進(jìn)行了大量BTI實(shí)驗(yàn),基于實(shí)驗(yàn)數(shù)據(jù)建立了PBTI&NBTI模型,借助模型可知曉器件在不同溫度和柵壓情況下的閾值電壓漂移程度。以P3M12080K4產(chǎn)品為例,該產(chǎn)品在極端應(yīng)用情況下(PBTI:Vgs=19V,TA=150℃)使用20年閾值電壓的漂移情況(+0.348V),該產(chǎn)品在極端應(yīng)用情況下(NBTI:Vgs=-8V,TA=150℃)使用20年閾值電壓的漂移情況(-0.17V)。

Cascode、平面柵、溝槽柵優(yōu)缺點(diǎn)

為提高高壓電源系統(tǒng)能源效率,半導(dǎo)體業(yè)者無(wú)不積極研發(fā)經(jīng)濟(jì)型高性能碳化硅功率器件,例如Cascode結(jié)構(gòu)、碳化硅MOSFET平面柵結(jié)構(gòu)、碳化硅MOSFET溝槽柵結(jié)構(gòu)等。這些不同的技術(shù)對(duì)于碳化硅功率器件應(yīng)用到底有什么影響,該如何選擇呢?

首先,Cascode是指采用SiMOSFET和常開型的SiCJFET串聯(lián)連接,如圖3所示。當(dāng)SiMOSFET柵極為高電平時(shí),MOSFET導(dǎo)通使得SiCJFET的GS短路,從而使其導(dǎo)通。當(dāng)SiMOSFET柵極為低電平時(shí),其漏極電壓上升直至使SiCJFET的GS電壓達(dá)到其關(guān)斷的負(fù)壓時(shí),這時(shí)器件關(guān)斷。Cascode結(jié)構(gòu)主要的優(yōu)點(diǎn)是相同的導(dǎo)通電阻有更小的芯片面積,由于柵極開關(guān)由SiMOSFET控制,使得客戶在應(yīng)用中可以沿用Si的驅(qū)動(dòng)設(shè)計(jì),不需要單獨(dú)設(shè)計(jì)驅(qū)動(dòng)電路。

圖3SiCCascode結(jié)構(gòu)示意圖

派恩杰半導(dǎo)體認(rèn)為,Cascode結(jié)構(gòu)只是從Si產(chǎn)品轉(zhuǎn)向SiC產(chǎn)品的一個(gè)過(guò)渡產(chǎn)品,因?yàn)镃ascode結(jié)構(gòu)完全無(wú)法發(fā)揮出SiC器件的獨(dú)特優(yōu)勢(shì)。首先,由于集成了SiMOSFET限制了Cascode的高溫應(yīng)用,特別是其高溫Rdson會(huì)達(dá)到常溫下的2倍;其次,器件開關(guān)是由SiMOSFET控制,因此開關(guān)頻率遠(yuǎn)低于正常SiCMOSFET器件,這是由于JFET和SiMOSFET的合封其dv/dt也只能達(dá)到10V/ns以下,而SiCMOSFET的dv/dt通??梢缘竭_(dá)30V/ns~80V/ns。這些缺點(diǎn)使得Cascode也無(wú)法減小無(wú)源元件的尺寸,從而達(dá)到減小整體系統(tǒng)體積和成本的需求;最后,雖然從Cascode結(jié)構(gòu)上是由SiC高壓JFET器件來(lái)承受母線電壓,但是在開關(guān)過(guò)程中,MOSFET和JFET的輸出電容依然會(huì)分壓,當(dāng)回路中存在電壓震蕩時(shí),低壓SiMOSFET依然有被擊穿的風(fēng)險(xiǎn)。

SiCMOSFET溝槽柵的主要優(yōu)勢(shì)來(lái)源于縱向溝道,這不但提高了載流子遷移率(這是由于SiC(11)晶面的遷移率高于(0001)晶面)而且可以縮小元胞尺寸從而有比平面型MOSFET更低的比導(dǎo)通電阻。然而,由于SiC非常堅(jiān)硬,想要獲得均勻,光滑且垂直的刻蝕表面的工藝難度和控制要求都非常的高,這也是只有英飛凌和Rohm推出溝槽柵SiCMOSFET的原因。溝槽柵工藝不僅對(duì)工藝實(shí)現(xiàn)要求非常高,在可靠性方面也存在一定的風(fēng)險(xiǎn)。首先,由于溝槽刻蝕后表面粗糙度和角度的限制使得溝槽柵的柵氧質(zhì)量存在風(fēng)險(xiǎn);其次,由于SiC的各向異性,溝槽側(cè)壁的氧化層厚度和溝槽底部的氧化層厚度不同,因此必須采用特殊的結(jié)構(gòu)和工藝來(lái)避免溝槽底部特別是拐角部分的擊穿,這也增加了溝槽柵柵氧可靠性的不確定性;最后,由于trench MOSFET的結(jié)構(gòu),使得trench柵氧的電場(chǎng)強(qiáng)度要高于平面型,這也是Infineon和Rohm要做單邊和雙溝槽的原因。

SiCMOSFET平面柵則是最早也是應(yīng)用最廣泛的結(jié)構(gòu),目前主流的產(chǎn)品均使用該結(jié)構(gòu)。派恩杰半導(dǎo)體產(chǎn)品采用的是也是平面柵MOSFET結(jié)構(gòu)?;谄矫鏂沤Y(jié)構(gòu),派恩杰已經(jīng)發(fā)布了650V-1700V各個(gè)電壓平臺(tái)的SiC MOSFET,而且已經(jīng)順利在新能源龍頭企業(yè)批量供貨,實(shí)現(xiàn)“上車”。

從硅過(guò)渡到碳化硅,MOSFET的結(jié)構(gòu)及性能優(yōu)劣勢(shì)對(duì)比

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉