女人被狂躁到高潮视频免费无遮挡,内射人妻骚骚骚,免费人成小说在线观看网站,九九影院午夜理论片少妇,免费av永久免费网址

當前位置:首頁 > 嵌入式 > 嵌入式硬件
[導讀]上世紀七八十年代就出來了各種數(shù)據(jù)傳輸?shù)膮f(xié)議,比如T1/E1載波系統(tǒng)(2.048Mbps)、X.25中繼系統(tǒng)、ISDN(綜合業(yè)務數(shù)字網(wǎng))等,那時的速度還比較慢的,到了九十年代,SDH(Synchronous Digital Hierarchy,同步數(shù)字體系)和SONET(Synchronous Optical Network同步光纖網(wǎng))標準出現(xiàn),其基本速度就是STM-1 155.520Mbps,STM-4為622.080Mbps,STM-16為2488.240Mbps,到更后來WDM(Wavelength

上世紀七八十年代就出來了各種數(shù)據(jù)傳輸?shù)膮f(xié)議,比如T1/E1載波系統(tǒng)(2.048Mbps)、X.25中繼系統(tǒng)、ISDN(綜合業(yè)務數(shù)字網(wǎng))等,那時的速度還比較慢的,到了九十年代,SDH(Synchronous Digital Hierarchy,同步數(shù)字體系)和SONET(Synchronous Optical Network同步光纖網(wǎng))標準出現(xiàn),其基本速度就是STM-1 155.520Mbps,STM-4為622.080Mbps,STM-16為2488.240Mbps,到更后來WDM(Wavelength Division Multiplexing, 波分復用)技術,再到最新的OTN(OpticalTransportNetwork,光傳送網(wǎng)),這里面最重要的個概念就是TDM(Time Division Multiplexing, 時分復用)。

時分多路復用(Time-Division Multiplexing,TDM)是一種數(shù)字的或者模擬(較罕見)的多路復用技術。使用這種技術,兩個以上的信號或數(shù)據(jù)流可以同時在一條通信線路上傳輸,其表現(xiàn)為同一通信信道的子信道。但在物理上來看,信號還是輪流占用物理通道的。時間域被分成周期循環(huán)的一些小段,每段時間長度是固定的,每個時段用來傳輸一個子信道。例如子信道1的采樣,可能是字節(jié)或者是數(shù)據(jù)塊,使用時間段1,子信道2使用時間段2,等等。一個TDM的幀包含了一個子信道的一個時間段,當最后一個子信道傳輸完畢,這樣的過程將會再重復來傳輸新的幀,也就是下個信號片段。

 

數(shù)字傳輸就像打包裹,最基本單元是一個小包裹,四個小包裹打成一個中的,再四個中的打成一個大的,再四個大的打成一個更大,然后再特大的。比如SONET的傳輸速度就是STM-1/-4/-16等這樣疊加上去,以2的指數(shù)倍往上翻。其中TDM-16速度為2488.240MBps,就是我們通常說的2.5Gbps。

上面說了堆協(xié)議,那總要具體的物理實現(xiàn),一般選用銅線或光纜進行遠距離傳輸。以光纜為例,數(shù)據(jù)先由電路中的并行數(shù)據(jù)變成串行傳送出去,然后再經(jīng)過光纖接口,變成光信號在光纖里傳輸,接收時先由光信號變成電信號,再由串行變成并行到內(nèi)部使用。其中由并行到串行/串行到并行經(jīng)過的就稱為SERDES PHY,高速SERDES的技術實現(xiàn)難度較高,得由模擬電路實現(xiàn),在很多場合就是一塊單獨的SERDES PHY芯片,那就有專門的公司來做這個事情,比如在業(yè)界大名鼎鼎的TI德州儀器,其TI芯片就賣得很好。逐漸實現(xiàn)這樣的產(chǎn)業(yè)鏈:做數(shù)字電路的、模擬電路的、測試設備的、生產(chǎn)制造的(包括PCB和SERDES PHY、光口、光纖等),已經(jīng)定了個基本速率后,再往上的更新?lián)Q代往往是X2地疊加,在數(shù)字電路上最好實現(xiàn),在模擬電路上也有這樣的動力,整個技術就一直這樣往前走下去。

回到標題高速串行接口由什么決定的來,PCI總線由Intel公司于91年提出,之后移交給第三方機構(gòu)PCI SIG。PCI SIG由多家業(yè)內(nèi)公司組成的聯(lián)盟,別的公司也可以申請加入成為會員,TI也是早期會員之一。就像聯(lián)合國一樣,Intel等公司像常任理事國一樣擁有更大的主導權;USB于94年由帶頭大哥Intel聯(lián)合微軟、HP、NEC等電腦公司組成USB-IF組織,96年推出USB1.0標準;(同期還有Apple推出的FireWare火線,也紅火了好多年)由此可見,Intel對PCI/PCIE和USB的建立和發(fā)展一直擁有極大的主導權。

2001年PCIE開始制定,決定以串行方式代替并行的PCI總線時,那時產(chǎn)業(yè)內(nèi)2.5G PHY已經(jīng)比較成熟了,PCI組織PCI-SIG決定直接借鑒此速度就很正常;等到PCIE2.0發(fā)布已經(jīng)是過2007年,就直接X2變成5G了; USB3.0于2008年發(fā)布,直接借鑒業(yè)界比較成熟的5G方案也就很正常了; 而PCIE3.0發(fā)布是2010年時(為什么PCIE3.0是8G而不是10G,這算是個折衷吧,速度越快對PCB走線設計和生產(chǎn)、線纜、測試儀器等要求越高,USB3.0采用64b/66b或128b/130b編碼方案,8G*64/66=7.88G,解碼后的速度幾乎就是2.0的二倍,2.0采用傳統(tǒng)的8b/10b編碼,解碼后速度5G*8/10=4G)。

 

等到USB3.1發(fā)布,也就是最近的事情(2014年),覺得10G PHY也比較成熟了,那也直接采用10G吧,USB3.1采用128b/132b編碼,效率與PCIE3.0是等效的,它直接向PCIE借鑒了很多內(nèi)容。

而ThunderBolt,定位在更高速速度傳輸,其1.0速度最開始設計時就是一 路10G PHY(大約2011年),而后2.0就成兩路10G PHY了,最近的3.0成兩路20G PHY,為什么不直接成40G PHY,工藝做不上去啊。

很早前,業(yè)界有個傳說,銅界質(zhì)PCB走線最高速度只能到16G,幾年前就已經(jīng)打破了,28G甚至32G以上跑銅界質(zhì)的高速PHY已經(jīng)有DEMO演示了,ThunderBolt2.0推出兩路10G PHY,自然也是業(yè)界有這樣能力去推出成熟產(chǎn)品。不出意外的是,ThunderBolt定位在高端,從最先推出1.0接口的MAC電腦(2011年),到現(xiàn)在已經(jīng)四年過去了,相對來說還很不普及,只在高端電腦上才有配備,其外設產(chǎn)品,比如支持該接口的外接存儲和高清顯示器見到過報道,但市場上賣得真不太多,比起這幾年一下子普及開來的USB3.0還是相差不少。與此類似待遇的是DisplayPort接口,顯示器接口從最早的VGA到DVI,到同時支持聲音圖像傳輸?shù)腍DMI、DisplayPort接口,HDMI逐漸變得常見,尤其是電視接口上,而DisplayPort仍然不太多見。而ThunderBolt在外觀上與Mini DP接口兼容,在功能上可認為是圖像傳輸接口DP和數(shù)據(jù)傳輸協(xié)議PCIE的合體。

 

這不,Intel一琢磨,那ThunderBolt3.0改成USB3.1 Type-C接口兼容吧,這樣支持ThunderBolt3.0的外設既可以連接對應的ThunderBolt3.0 host,享受40G的高速,也可以接在USB3.1 Type-C上,盡管只能跑USB3.0 5G速率(注意,資料顯示所兼容的控制器是USB3.0,而不是最新的USB3.1; 也有人指出Intel推出的控制器是支持10G速度的。無論如何PHY通道是支持的,這主要取決于控制器部分),其實這樣對于外設廠商也是一大利好,用戶也可以放心地買,不用擔心接口不支持。

最后做個總結(jié):高速串行接口速度由什么決定?當時協(xié)議公布時前代技術的積累與影響和已成熟技術,二者占重要因素。比如2.5G速率和STM-1 155M的關系,比如不同年代PHY技術的成熟度,再者還有業(yè)界領先公司在制定標準時的號召力及技術前瞻性,如Intel在多種協(xié)議上的主導力。

本站聲明: 本文章由作者或相關機構(gòu)授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅(qū)動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅(qū)動性能的關鍵。

關鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質(zhì)量和效率直接關系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅(qū)動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關鍵字: LED 驅(qū)動電源 開關電源

LED驅(qū)動電源是把電源供應轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅(qū)動電源
關閉