混頻器通常由非線性元件和選頻回路構(gòu)成。混頻器位于低噪聲放大器 (LNA )之后 , 直接處理 LNA 放大后的射頻信號(hào)。
變壓器作為電力系統(tǒng)中的重要組成部分,其性能穩(wěn)定與否直接關(guān)系到整個(gè)系統(tǒng)的安全運(yùn)行。
LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。
激光焊接機(jī),又稱激光焊機(jī)、鐳射焊機(jī),是一種利用高能量激光束進(jìn)行材料加工的焊接設(shè)備,主要應(yīng)用于汽車制造、電子工業(yè)、生物醫(yī)學(xué)及模具修復(fù)等領(lǐng)域。
正弦驅(qū)動(dòng)不但可實(shí)現(xiàn)直流無(wú)刷電機(jī)的高效率運(yùn)行,還可實(shí)現(xiàn)無(wú)脈動(dòng)的轉(zhuǎn)矩輸出,但控制過(guò)程比較復(fù)雜。
在AC-DC SMPS應(yīng)用中,橋式整流器被用于將交流輸入轉(zhuǎn)換為直流總線電壓,并為第二級(jí)的隔離DC-DC轉(zhuǎn)換器供電。其中,電流與輸入電壓的不匹配會(huì)給電網(wǎng)帶來(lái)大量的諧波反饋。
UPS電源的備用延時(shí)時(shí)間是指在停電或電網(wǎng)故障情況下,UPS電池能夠提供電能的持續(xù)時(shí)間。
在電力電子設(shè)備的運(yùn)行中,EI 變壓器作為一種常見(jiàn)的電磁轉(zhuǎn)換裝置,其空載電流特性直接關(guān)系到設(shè)備的能效與穩(wěn)定性??蛰d電流是指變壓器在次級(jí)開(kāi)路時(shí),初級(jí)線圈通過(guò)的電流,它主要由磁化電流和鐵損電流兩部分組成。其中,磁化電流用于建立鐵芯中的交變磁場(chǎng),而鐵損電流則是因鐵芯的磁滯損耗和渦流損耗產(chǎn)生的。在實(shí)際應(yīng)用中,降低空載電流是提升變壓器性能的重要方向,那么增加初級(jí)線圈的匝數(shù)是否能實(shí)現(xiàn)這一目標(biāo)呢?
在 PCB(印制電路板)設(shè)計(jì)中,電源部分的布局布線一直是工程師關(guān)注的核心環(huán)節(jié),其中電感和 MOS 管所在區(qū)域的走線限制更是行業(yè)內(nèi)的重要規(guī)范。這一設(shè)計(jì)準(zhǔn)則并非憑空制定,而是基于電磁兼容、信號(hào)完整性、散熱性能等多方面的工程實(shí)踐總結(jié)。深入理解這一規(guī)則背后的原理,對(duì)提升電源電路的穩(wěn)定性和可靠性具有關(guān)鍵意義。
在電子設(shè)備性能不斷提升的當(dāng)下,散熱問(wèn)題愈發(fā)凸顯。無(wú)論是電腦、手機(jī),還是各類工業(yè)設(shè)備,過(guò)熱都可能導(dǎo)致性能下降、壽命縮短,甚至引發(fā)故障。因此,選擇一個(gè)高性價(jià)比的散熱解決方案,對(duì)于保障電子設(shè)備的穩(wěn)定運(yùn)行至關(guān)重要。
在開(kāi)關(guān)電源實(shí)際布線時(shí),首先要根據(jù)實(shí)際應(yīng)用,仔細(xì)分清楚各種地線的種類,然后依據(jù)不同地線的特點(diǎn)和電路的需求選擇合適的接地方式。不論采用何種接地方式,都必須始終遵守 “低阻抗,低噪聲” 的原則,以確保接地的有效性,減少電磁干擾對(duì)電源性能的影響。
在半導(dǎo)體制造的精密鏈條中,測(cè)試探針卡(Probe Card)猶如一座無(wú)形的橋梁,連接著待測(cè)芯片與測(cè)試系統(tǒng),其性能直接決定了芯片良率檢測(cè)的準(zhǔn)確性與生產(chǎn)效率。從5納米先進(jìn)制程到第三代半導(dǎo)體材料,從消費(fèi)電子芯片到航天級(jí)器件,探針卡技術(shù)始終是半導(dǎo)體質(zhì)量把控的核心環(huán)節(jié)。本文將從技術(shù)原理、設(shè)計(jì)挑戰(zhàn)、創(chuàng)新趨勢(shì)三個(gè)維度,揭開(kāi)這一精密藝術(shù)的神秘面紗。
在海拔5000米的高原基站中,通信設(shè)備需承受-40℃的極寒與55℃的暴曬;在新能源汽車的電池管理系統(tǒng)中,功率模塊要在-30℃至125℃的范圍內(nèi)循環(huán)工作;在航天器的電子艙內(nèi),電子元件更需經(jīng)受發(fā)射階段的瞬時(shí)高溫與太空環(huán)境的極低溫交替沖擊。這些極端場(chǎng)景對(duì)印刷電路板組件(PCBA)的可靠性提出了嚴(yán)苛挑戰(zhàn),而溫度循環(huán)測(cè)試(Temperature Cycling Test, TCT)正是驗(yàn)證其耐受能力的核心手段。這項(xiàng)通過(guò)模擬冷熱交替環(huán)境來(lái)評(píng)估材料膨脹/收縮效應(yīng)的測(cè)試技術(shù),已成為電子制造業(yè)把控產(chǎn)品質(zhì)量的“生死關(guān)”。
在5G通信、人工智能與集成電路技術(shù)高速發(fā)展的今天,電子元器件向高密度、高功率、微型化方向演進(jìn),其熱管理難題愈發(fā)凸顯。傳統(tǒng)環(huán)氧塑封料因熱膨脹系數(shù)(CTE)與芯片、基板不匹配,易引發(fā)界面分層、翹曲甚至失效,成為制約器件可靠性的關(guān)鍵瓶頸。西安交通大學(xué)胡磊教授團(tuán)隊(duì)提出的負(fù)熱膨脹材料Cu?V?O?填充方案,通過(guò)調(diào)控樹(shù)脂基復(fù)合材料的熱膨脹行為與熱傳導(dǎo)路徑,為解決這一難題提供了創(chuàng)新思路。
在電子制造行業(yè),SMT(表面貼裝技術(shù))車間的爐后AOI點(diǎn)級(jí)不良率是衡量焊接質(zhì)量的核心指標(biāo)。當(dāng)不良率超過(guò)客戶要求的50ppm(百萬(wàn)分比)時(shí),不僅會(huì)導(dǎo)致產(chǎn)品返工成本激增,更可能引發(fā)批量性質(zhì)量事故。本文從工藝參數(shù)優(yōu)化、設(shè)備精度提升、過(guò)程控制強(qiáng)化三個(gè)維度,提出系統(tǒng)性解決方案,助力企業(yè)將不良率穩(wěn)定控制在50ppm以下。
a583307414
sendmo
asdasdasf
XD茂茂
cindy123456
2454347030
DYQ26
zyd4957
18713271819cxy
1994089340
rainbow9527
anpengaimao
王洪陽(yáng)
zrddyhm
zh1812
dongliuwei
senlenced
年華2
lyz0609
dianzizhilu
lzdestiny
龍象
changlele
skyking1
新手編程
復(fù)制忍者
dsysd
歸途2018
zbby
小黑智